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ABSTRACT

This work focuses on the clustering methods within unsupervised learning, a challenging
sub-division of Machine Learning where there is no response variable available. Clustering is a
technique for finding groups in a dataset, where the observations in each group are similar to
each other and different from those in other groups. The K-Means method, recognized as the
most well-known and widely used clustering technique, efficiently handles quantitative variables,
like many other existing clustering methods. However, the K-Means algorithm cannot be used
with qualitative variables, such as gender or education level. To overcome this limitation, the
K-Modes method was proposed, which uses modes instead of means to represent the clusters.
The existing partitional clustering algorithms without variable weighting have a limitation
in that they assign equal importance to all variables. It can be problematic when clustering
high-dimensional, sparse data where the characterization of cluster partitions can be explained
by a particular subset of variables. To address this issue, subspace clustering techniques and
adaptive distances have been proposed, with the latter being derived from constraints based
on the sum and product of the weights relative to the importance of the variables. This work
proposes a new fuzzy clustering algorithm for qualitative data based on adaptive distances,
which demonstrates improved performance compared to conventional methods. The local
adaptive distances, which assign different weights to each variable across the clusters, perform
better for datasets with high levels of dispersion and overlap of classes. The results extend the
capabilities of existing clustering algorithms based on adaptive distances.

Keywords: clustering; unsupervised learning; adaptive distances; qualitative data.



RESUMO

Este trabalho se concentra nos métodos de agrupamento dentro do aprendizado não
supervisionado, uma subdivisão desafiadora da Aprendizagem de Máquina onde não há variável
resposta disponível. O agrupamento é uma técnica para encontrar grupos em um conjunto
de dados, onde as observações em cada grupo são semelhantes umas às outras e diferentes
das observações em outros grupos. O método K-Means, reconhecido como a técnica de
agrupamento mais conhecida e amplamente utilizada, lida de forma eficiente com variáveis
quantitativas, assim como muitos outros métodos de agrupamento existentes. No entanto, o
algoritmo K-Means não pode ser usado com variáveis qualitativas, como gênero ou nível de
educação. Para superar esta limitação, foi proposto o método K-Modes, que usa modas em
vez de médias para representar os grupos. Os algoritmos de agrupamento particional existentes
sem ponderação variável têm a limitação de atribuir importância igual a todas as variáveis. Isso
pode ser problemático ao agrupar dados de alta dimensão e esparsos, onde a caracterização das
partições do agrupamento pode ser explicada por um subconjunto particular de variáveis. Para
abordar este problema, foram propostas técnicas de agrupamento de subespaço e distâncias
adaptativas, sendo estas últimas derivadas a partir de restrições baseadas na soma e no produto
dos pesos relativos à importância das variáveis. Este trabalho propõe um novo algoritmo
de agrupamento difuso para dados qualitativos baseado em distâncias adaptativas, o qual
demonstra desempenho melhorado em comparação aos métodos convencionais. As distâncias
adaptativas locais, que atribuem pesos diferentes para cada variável em relação aos grupos,
apresentam melhor desempenho para conjuntos de dados com altos níveis de dispersão e
sobreposição de classes. Os resultados ampliam as capacidades dos algoritmos de agrupamento
existentes baseados em distâncias adaptativas.

Palavras-chaves: agrupamento; aprendizado não supervisionado; distâncias adaptativas; dados
qualitativos.
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1 INTRODUCTION

1.1 MOTIVATION

The Machine Learning field is divided into two parts: supervised learning and unsupervised
learning, as described in (JAMES et al., 2013). Within the sub-division of supervised learning,
we have the following scenario: for each observation of the explanatory variables, there is
an associated response variable. We want to adjust a model that relates the response to
the predictors, with the objective of predicting, with some accuracy, the response for future
observations or a better understanding of the relationship between the response and the
predictors. In the sub-division of unsupervised learning, we have a more challenging situation,
wherein for every observation, we observe a vector of values, but which is not associated with an
answer. As such, we are blindfolded when dealing with problems of this nature. This situation
is called unsupervised because in which we lack a response variable capable of supervising our
analysis. In this work, we are interested in the clustering methods within the unsupervised
learning sub-division.

Clustering is a technique for finding groups in a dataset, where the observations in each
group are similar to each other and different from those in other groups (JAMES et al., 2013).
When we cluster the observations of a dataset, we seek to partition them into distinct groups
so that the observations within each group are quite similar to each other, while observations
in different groups are quite different from each other.

Most of the existing clustering methods were developed specifically to deal with objects
characterized by variables of a quantitative nature. One of the best known and studied in the
literature is the K-Means method (MACQUEEN, 1965; HARTIGAN; WONG, 1979), by using the
concept of arithmetic mean to group objects. In short, the clusters to be created are represented
by the means of the variables that quantify the objects belonging to each cluster. However, The
K-Means algorithm cannot be used in the presence of qualitative variables, since its clusters
are based on the mean of the analyzed variables. Thus, there is a need for methods to deal
with the cases of objects that are measured by qualitative variables, such as gender, education
level, social class, etc.

A first effort to get around the K-Means limitation of dealing with qualitative variables, was
carried out in (RALAMBONDRAINY, 1995). The idea was to transform the qualitative variables
into multiple binary variables, using 0 and 1 to represent the absence or presence of a category,
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respectively (NETTER; WASSERMAN; KUTNER, 1989). And, after this modification, apply K-
Means normally. Yet, in a context of a large number of variables with different categories, it
becomes inevitable an increase in computational cost. Furthermore, the new means computed
would be given by a real value between 0 and 1, not indicating the original characteristics of
the objects.

Thereafter, a new clustering method called K-Modes was proposed to deal with qualitative
variables (HUANG, 1998). This method extends K-Means, by using modes instead of means
to represent the clusters. Also, the distance measures used in the objective function had to
be adapted. A generalization of the K-Modes method was proposed in (HUANG; NG, 1999),
based on fuzzy sets (ZADEH, 1965), to create the Fuzzy C-Modes method where there are
membership degrees to determine the association of an object to a given cluster.

One limitation of these clustering algorithms is that they assign equal importance to all
variables when determining an object’s cluster membership. This can be problematic in certain
situations, such as when clustering high-dimensional, sparse data where the cluster structure is
typically explained by a specific subset of variables instead of the entire set, and clusters with
different forms. A more suitable approach is to incorporate appropriate variable weights into the
clustering process (TSAI; CHIU, 2008). Subspace clustering techniques aim to find clusters in
specific combinations of dimensions. In addition, the significance of each variable in relation to
each cluster can vary, meaning that each cluster may have a unique set of important variables.

Thereby, adaptive distances are based on a weight vector for each cluster in a way that the
variables’ importance is treated to achieve better partitions (KELLER; KLAWONN, 2000; CHAN et

al., 2004; FRIGUI; NASRAOUI, 2004). Moreover, the weight expressions have been derived based
on two types of constraints. First, it has been stipulated that the sum of the variable weights
must equal one. Second, it has been required that the product of the variable weights must
equal one.

Determining methods such as K-Modes and Fuzzy C-Modes with variable weighting aims to
improve the quality of unsupervised learning techniques, particularly in scenarios with qualitative
variables and the need for different variable importance within clusters.

1.2 OBJECTIVE

The main aim of this work is to develop a Fuzzy C-Modes algorithm with variable weighting,
wherein the distance measure has an adaptive component to each variable and cluster, with
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different constraints.
More specifically, this work aims to:

• Propose a new algorithm for qualitative data partitional clustering;

• Consider different adaptive distance measures to calculate the dissimilarity in the objective
function;

• Evaluate, based on synthetic and real datasets, the performance between hard and
fuzzy methods using adaptive distance measures and other presented clustering methods
through literature;

• Implement the proposed methods as a library in the R programming language to be made
available to the community in open-source format.

1.3 STRUCTURE OF THE DOCUMENT

This dissertation comprises this introductory chapter and four more chapters. In Chapter 2,
basic concepts about qualitative data and partitional clustering are presented. Chapter 3 the
contribution of this work is shown: the proposal of a new Fuzzy C-Modes algorithm based on
adaptive distances in the objective function. In Chapter 4, a set of experiments performed with
both synthetic and real datasets to evaluate the proposed method are presented. Finally, in
Chapter 5, the contributions about method proposal and future works are provided.
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2 OVERVIEW OF THE PROBLEM

In this chapter, the basic concepts of clustering algorithms will be introduced. Then, there
will be a description of the types of existing variables and the measures of proximity most used
in the literature, for each type of variable presented. Finally, the main types of methods in
clustering are listed, headlining the clustering methods of the partitional type.

2.1 BASIC CONCEPTS

Clustering analysis is a type of Machine Learning algorithm whose purpose is to separate
objects into clusters, based on the characteristics that these objects have. The basic idea
consists of placing objects in the same cluster that is similar according to some predetermined
criteria. The clusters obtained must present low internal variance and high external variance
(DEBORAH; BASKARAN; KANNAN, 2010). This means that objects of a given cluster must be
mutually similar and, preferably, very different from the elements of other clusters. To illustrate
the task of clustering objects into clusters, refer to the example of the wide variety of situations
in Figure 1.

Figure 1 – Clustering problems

Source: (RUSPINI; BEZDEK; KELLER, 2019)

For some datasets such as (a) and (f), it is natural to think of the formation of two clusters.
However, for datasets (c) and (g), e.g., it becomes harder thinking to determine a linear
separation without overlapping the formation of two or more clusters. Regardless of the ease
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of naturally identifying possible groups, all the datasets are in a scenario in which there’s no
pre-existing knowledge about the real classes defined for the objects. With that in mind, there
is a need to adopt a similarity criterion and then establish which objects are similar and which
ones have little similarity, placing these in different clusters and those in the same cluster. In
this way, clustering is a task prior to classification, as there is no knowledge a priori of classes
to allocate the studied objects.

The clustering allows, then, to determine the clusters existing in a set of objects. Attention
is drawn to the fact that the choice of the total number of clusters is subjective, and it is up
to the experimenter to determine it in advance. With these available clusters, it is possible
to analyze the objects that compose them, identifying the common characteristics of their
respective objects. Thus, one can create a label representing them. With the existence of labels,
when receiving a new object, which belongs to the considered universe, it is possible to allocate
it correctly.

2.2 MAIN PHASES IN CLUSTERING ALGORITHMS

The basic structure of a clustering analysis can be represented in four steps, as shown in
Figure 2, obtained from (XU; WUNSCH, 2005). It should be noted that these phases are not
independent of each other. Sometimes, it will be necessary to go back to previous steps to
correct and improve later phases.

Figure 2 – Clustering procedure

Source: (XU; WUNSCH, 2005)

The phases are described below:

• Variable selection or extraction: In the selection step, variables are defined to be
used for the clustering, while the extraction step uses transformations to generate useful
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and new variables from the originals (JAIN; DUBES, 1988). The chosen set of variables
should describe the similarity between the objects, in terms relevant to the researched
problem. This phase optimizes the computational processing time of the chosen method
since the search space is reduced (HORE; HALL; GOLDGOF, 2007). This directly affects
the performance of the next step. Furthermore, a good choice or selection of variables
directly interferes with the quality of the formed clusters;

• Development or selection of a clustering algorithm: This phase is usually combined
with the choice of a proximity measure and the definition of an objective function. The
proximity measure will quantify how close an object is to another. Different proximity
measures are found in the literature and basically depend on the type of variables
(quantitative or qualitative) involved in the study. Having chosen the proximity measure,
the construction of an objective function makes obtaining the clusters an optimization
problem, which is well-defined mathematically. The algorithm will specify, in general, how
these functions will be optimized, given the choice of a proximity measure appropriate to
the type of the variable used;

• Clusters validation: Given a dataset, every clustering algorithm can generate a cluster,
no matter what the theoretical or practical sense of it. In addition, there must be criteria
to assess the reliability of the results offered by the algorithms. This evaluation can be
based on external validation indexes and internal. An external index is used to compare
the cluster structure obtained by clustering with an a priori defined structure and an
internal index determines whether the grouping structure is appropriate to the data
(SOUZA; CARVALHO, 2004);

• Results interpretation: In this phase, it is verified how to use the results obtained in
the clustering algorithm, so that the problems raised at the beginning of the research are
resolved. The need for further analysis and experiments may arise to ensure the reliability
of the extracted knowledge.

The steps described form a very useful methodological procedure for carrying out clustering
analysis. However, (MANLY; ALBERTO, 2016) warns that there is still no universal and effective
for selecting or extracting variables, as well as for choosing the algorithm to be employed. The
author also points out that the evaluation indices provide information important about the
quality of the generated clusters, but how to choose this same criterion is still a problem that
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requires more effort. An important consideration to be made is that the choice of clustering
algorithm should be based, essentially, on the type of variable related to the objects under
study. Many different types of variables require different types of methods to be employed.

2.3 NOTATION

In the following sections and chapters of this work, we assume that the set Ω = {𝑤1, . . . , 𝑤𝑛}

of 𝑛 objects are grouped into 𝑐 clusters. These objects are characterized by a set {𝐴1, . . . , 𝐴𝑝}

of 𝑝 variables. So the variable 𝐴 can be understood as a function that associates the result of
realization of the observed property 𝐴(𝑤) = 𝑥 with each object 𝑤 ∈ Ω.

Each object 𝑤𝑖 (𝑖 = 1, . . . , 𝑛) will be represented by a variable vector 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝),
where 𝑥𝑖𝑗 is the result of the realization of the variable 𝑗 observed in the object 𝑤𝑖. In the
case of the set {𝐴1, . . . , 𝐴𝑝} being formed by variables of the quantitative type, the described
elements will be called quantitative objects. Already if {𝐴1, . . . , 𝐴𝑝} is formed by qualitative
variables, the elements described by them will be called qualitative objects. In the possibility of
{𝐴1, . . . , 𝐴𝑝} having both types of variables, the objects will be called mixed objects.

The set of possible results of the realizations of a variable 𝐴𝑗 is called the domain of
the variable 𝐴𝑗, which will be denoted by DOM(𝐴𝑗), with 𝑗 ∈ {1, . . . , 𝑝}. If 𝐴1, . . . , 𝐴𝑗 are
quantitative variables, DOM(𝐴𝑗) = R. In the case of qualitative objects, we have that the
cardinality of this set, |DOM(𝐴𝑗)| = 𝑛𝐴𝑗

, will represent the number of possible categories of
the 𝑗-th qualitative variable. When a certain category 𝑡 of 𝐴𝑗 needs to be specified, it will be
specified as 𝑐𝑡𝑗, with 𝑡 ∈ DOM(𝐴𝑗). Every object is considered to have exactly 𝑝 variables.

2.4 VARIABLE TYPES

As mentioned in the previous section, a variable 𝐴𝑗 can be understood as a vector of variables
of interest, which measures each object in the sample or population. Based on DOM(𝐴𝑗), the
variables are classified into two large groups: variables qualitative and quantitative variables
(MORETTIN; BUSSAB, 2017). A variable is qualitative, if DOM(𝐴𝑗) is a finite set and the
elements of this set are categories. A variable is quantitative, if your domain is the set of real
numbers R, or DOM(𝐴𝑗) ⊆ R. The variables qualitative and quantitative are subdivided as
follows:
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1. Qualitative;

• Ordinal;

• Nominal.

2. Quantitative.

• Discrete;

• Continuous.

2.4.1 Qualitative variables

The qualitative variables have their domain DOM(𝐴𝑗) finite and without a numeric meaning.
They represent a classification of objects. In the nominal type, there are no sorts in the domain.
For instance, gender, ethnicity, and political affiliation are examples of nominal variables. When
the domain of these variables has only two categories, which are usually encoded as 0 or 1,
i.e. DOM(𝐴𝑗) = {0, 1}, these variables are called binary. An example of a binary variable is
whether a person has a specific medical condition or not. A variable 𝐴𝑗 is qualitative ordinal
if its domain is finite and for each pair of objects 𝑥𝑖𝑗, 𝑥𝑘𝑗 ∈ DOM(𝐴𝑗) there is a linear order
between them, that is, 𝑥𝑖𝑗 < 𝑥𝑘𝑗 or 𝑥𝑘𝑗 < 𝑥𝑖𝑗. For example, education level is an ordinal
variable because it can be ranked from less to more education, such as high school, some
college, Bachelor’s degree, Master’s degree, and Doctorate degree. Other examples of ordinal
variables include socioeconomic status and stages of disease progression.

2.4.2 Quantitative variables

Quantitative variables are variables that can be measured on a quantitative scale, that is,
they present numerical values that make sense. As shown, they can be discrete or continuous.
In the discrete case, DOM(𝐴𝑗) is a finite or infinite enumerable set of values (JAMES, 2015). It
is usually the result of counts event. In the continuous case, the domain is given by values on a
continuous scale in R. Usually, they must be measured through some instrument. It is worth
noting that a variable, originally quantitative, can be collected in a qualitative manner. For
example, the variable age measured in complete years is a quantitative continuous variable.
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However, if only the age group is informed (0 to 5 years old, 6 to 10 years old, etc.), it is a
qualitative ordinal variable.

(JAMES et al., 2013) draws attention to the fact that it is necessary to standardize the
quantitative variables, aiming to mitigate the effects of different scale measures. Such an
effect can compromise the final result of the clustering. The chosen distance function can also
help mitigate those effects, e.g., the Mahalanobis distance (MAESSCHALCK; JOUAN-RIMBAUD;

MASSART, 2000).

2.5 SIMILARITY MEASURES

The use of an appropriate measure relates to the type of object being analyzed. Therefore,
the choice of similarity measure should be based on the type of domain of the variables 𝐴𝑗 . By
using these measures, the criteria are established that define whether two objects 𝑥𝑖 and 𝑥𝑘 are
close, or not. Based on this, objects are allocated to the same cluster or to different clusters.

These measures can be divided into two types: similarity and dissimilarity measures. (GOSH-

TASBY, 2012) defines that a similarity measure 𝑠 is considered a metric if it produces a larger
value as the dependency between the corresponding values of the observations increases. A
dissimilarity measure 𝑑 is a metric if it produces a smaller value as the dependency between
the values corresponding observations decreases. These values we refer to can be the grey
level value of the pixels of the compared images. As the price of two real estates located in
a city. As an example of a similarity measure, we have the Pearson correlation coefficient
(MORETTIN; BUSSAB, 2017), and as a dissimilarity measure, the square of the Euclidean distance
(GOSHTASBY, 2012). Notice that a dissimilarity measure can be written as 𝑑 = (1 − 𝑠).

Thus, a similarity 𝑠 is a function 𝑠 : Ω × Ω → R+, which satisfies the following properties
∀𝑥𝑖,𝑥𝑘 ∈ Ω (𝑖, 𝑘 = 1, . . . , 𝑛):

1. ∀𝑥𝑖,𝑥𝑘 ∈ Ω, 𝑠(𝑥𝑖,𝑥𝑘) ≥ 0;

2. ∀𝑥𝑖 ∈ Ω, 𝑠(𝑥𝑖,𝑥𝑖) ≥ 𝑚𝑎𝑥𝑥𝑘
𝑠(𝑥𝑖,𝑥𝑘);

3. ∀(𝑥𝑖,𝑥𝑘) ∈ Ω × Ω : 𝑠(𝑥𝑖,𝑥𝑘) = 𝑠(𝑥𝑘,𝑥𝑖).

A dissimilarity 𝑑 is a function 𝑑 : Ω × Ω → R+, which satisfies the following properties
∀𝑥𝑖,𝑥𝑘,𝑥𝑟 ∈ Ω (𝑖, 𝑘, 𝑟 = 1, . . . , 𝑛):

1. ∀𝑥𝑖,𝑥𝑘 ∈ Ω, 𝑑(𝑥𝑖,𝑥𝑘) ≥ 0;
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2. ∀𝑥𝑖 ∈ Ω, 𝑑(𝑥𝑖,𝑥𝑖) = 0;

3. ∀(𝑥𝑖,𝑥𝑘) ∈ Ω × Ω : 𝑑(𝑥𝑖,𝑥𝑘) = 𝑑(𝑥𝑘,𝑥𝑖).

In addition, a distance 𝑓 is a dissimilarity function, which also satisfies properties 1. to 3.
and, additionally, the property of triangular inequality (LIMA, 2015). Such property guarantees
that the distance from an object 𝑥𝑖 to an object 𝑥𝑘 will never exceed the sum of the distances
of these objects to another object 𝑥𝑟, i.e.,

4. ∀(𝑥𝑖,𝑥𝑘) ∈ Ω × Ω : 𝑓(𝑥𝑖,𝑥𝑘) ≤ 𝑓(𝑥𝑖,𝑥𝑟) + 𝑓(𝑥𝑘,𝑥𝑟).

There are several similarity measures proposed in the literature. As reported, the simi-
larity/dissimilarity between pairs of objects is calculated depending on the type of variable
that describes the objects. Next, we list some measures for each type of variable and their
characteristics.

2.5.1 Measures for quantitative variables

Most of the measures proposed in the literature are for quantitative variables. It should be
noted that in this work, only the three most used will be mentioned. For more details on other
measures, it is recommended to consult (XU; WUNSCH, 2005).

The next presented measurements will be defined as distances, which meet properties
1. to 4. Therefore, the distance 𝑓(𝑖, 𝑘) between the quantitative objects 𝑤𝑖 and 𝑤𝑘 will be
constructed from values of 𝑝 variables, transformed into vectors 𝑥𝑖 and 𝑥𝑘.

The most used distances for quantitative objects are:

• Euclidian distance

𝑓(𝑖, 𝑘) =
√︁

(𝑥𝑖1 − 𝑥𝑘1)2 + · · · + (𝑥𝑖𝑚 − 𝑥𝑘𝑚)2. (2.1)

• Manhattan distance

𝑓(𝑖, 𝑘) = |𝑥𝑖1 − 𝑥𝑘1| + · · · + |𝑥𝑖𝑚 − 𝑥𝑘𝑚|. (2.2)

• Minkowski distance

𝑓(𝑖, 𝑘) = 𝜆

√︁
(|𝑥𝑖1 − 𝑥𝑘1|)𝜆 + · · · + (|𝑥𝑖𝑚 − 𝑥𝑘𝑚|)𝜆. (2.3)

The last distance generalizes the first two when 𝜆 = {1, 2}. Also, the larger the value of 𝜆, the
greater the weight is given to very different (dissimilar) observations.
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2.5.2 Measures for qualitative variables

Next, the main measures for the qualitative variables are described. The qualitative binary
variable, the particular case of the nominal when we have |DOM(𝐴𝑗)| = 2, has a different
evaluation approach from the general nominal case for reasons of interpretability of the event
that was observed by this variable. In general, the comparison between binary objects is more
interested in understanding whether or not there was an agreement between them, rather than
a simple equality.

2.5.2.1 Binary variables

Binary variables can take only two different values, as mentioned. Then let be the pair of
qualitative objects (𝑤𝑖, 𝑤𝑘), each described by a vector of 𝑝 binary variables, where 𝑥𝑖𝑗 = 𝑥𝑘𝑗 = 0

indicates absence for variable 𝑗 and 𝑥𝑖𝑗 = 𝑥𝑘𝑗 = 1 indicates presence.
The most used proximity measures between qualitative objects are similarities 𝑠, which are

generally based on the following quantities:

𝑎: number of variables 𝐴𝑗, 1 ≤ 𝑗 ≤ 𝑝, for which both objects (𝑤𝑖, 𝑤𝑘) assume the value 1;

𝑏: number of variables 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑝, for which the object 𝑤𝑖 assumes the value 1 and the
object 𝑤𝑘 assumes the value 0;

𝑐: number of variables 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑝, for which the object 𝑤𝑖 assumes the value 0 and the
object 𝑤𝑘 assumes the value 1;

𝑑: number of variables 𝐴𝑗, 1 ≤ 𝑗 ≤ 𝑝, for which both objects (𝑤𝑖, 𝑤𝑘) assume the value 0.

Consider the following similarities:

1. Sokal-Michener correspondence coefficient

𝑠(𝑖, 𝑘) = 𝑎+ 𝑑

𝑎+ 𝑏+ 𝑐+ 𝑑
, 0 ≤ 𝑠(𝑖, 𝑘) ≤ 1. (2.4)

This similarity represents the proportion of variables 𝐴𝑗 in which there is an agreement
in the values of individuals 𝑖 and 𝑘 (SOKAL; MICHENER, 1975).

2. Jaccard coefficient
𝑠(𝑖, 𝑘) = 𝑎

𝑎+ 𝑏+ 𝑐
, 0 ≤ 𝑠(𝑖, 𝑘) ≤ 1. (2.5)
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This similarity represents the number of variables 𝐴𝑗, in which both objects have a
present value, in relation to the number of variables 𝐴𝑗 , where at least one of the objects
have a present value (JACCARD, 1901).

3. Gower-Lengendre coefficient

𝑠(𝑖, 𝑘) = (𝑎+ 𝑑) − (𝑏+ 𝑐)
𝑎+ 𝑏+ 𝑐+ 𝑑

, −1 ≤ 𝑠(𝑖, 𝑘) ≤ 1. (2.6)

This similarity makes the difference between agreements and disagreements relative to
the total 𝑝 of observed variables. Unlike 2.4 and 2.5, it can take values negative, situation
to occur, if there are more disagreements than agreements, in the variable values for
qualitative objects 𝑤𝑖 and 𝑤𝑘 (GOWER; LEGENDRE, 1986).

The similarity measures 𝑠 can be easily converted into 𝑑 dissimilarities measures by computing
𝑑(𝑖, 𝑘) = 1 − 𝑠(𝑖, 𝑘).

2.5.2.2 Nominal variables

We now have the pair of objects (𝑤𝑖, 𝑤𝑘) described by a vector of 𝑝 nominal variables.
In general, the measure of dissimilarity between 𝑤𝑖 and 𝑤𝑘 is understood as the total of
disagreements that occurred, when analyzing these two objects, with respect to the 𝑝 variables
(KAUFMAN; ROUSSEEUW, 2009). How much the smaller the number of dislocations, the greater
the similarity between the two objects.

Consider,
𝑑(𝑖, 𝑘) =

𝑝∑︁
𝑗=1

𝜑(𝑥𝑖𝑗, 𝑥𝑘𝑗), (2.7)

where

𝜑(𝑥𝑖𝑗, 𝑥𝑘𝑗) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑥𝑖𝑗 = 𝑥𝑘𝑗

1, if 𝑥𝑖𝑗 ̸= 𝑥𝑘𝑗

.

2.5.2.3 Ordinal variables

When the qualitative variables are of the ordinal type, the proximity between objects 𝑤𝑖

and 𝑤𝑘 can be calculated in a very similar way to the calculation used for quantitative objects.
The procedure consists of the following steps:
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1. For each variable 𝑗 (𝑗 = 1, . . . , 𝑝) its possible categories are enumerated 𝑐𝑡𝑗 , according to
the order existing between them. Let {1, . . . , 𝑛𝐴𝑗

} an enumerated list of the categories, for
which 𝑛𝐴𝑗

is the total number of categories of variable 𝑗. For the objects 𝑤𝑖 and 𝑤𝑘, each
category 𝑥𝑖𝑗 , 𝑥𝑘𝑗 is replaced in their respective order 𝑟𝑖𝑗 , 𝑟𝑘𝑗 with 𝑟𝑖𝑗 , 𝑟𝑘𝑗 ∈ {1, . . . , 𝑛𝐴𝑗

}.

2. Since each variable has a different number of categories, a normalization of the data is
necessary, and this can be accomplished by doing

𝑧𝑖𝑗 = 𝑟𝑖𝑗 − 1
𝑛𝐴𝑗

− 1 , with 𝑖 = 1, . . . , 𝑛.

3. Finally, the dissimilarity between objects 𝑤𝑖 and 𝑤𝑘 can be computed using the distances
2.1, 2.2 or 2.3 applied to the normalized data vectors 𝑧𝑖 and 𝑧𝑘.

2.6 PARTITIONAL CLUSTERING OVERVIEW

There are proposals in the literature for different methods, with different forms of clas-
sification. This fact is related to the number of existing algorithms and techniques, as well
as the different possibilities of application. However, the most concerted division, which will
be adopted in this work, is to divide the methods in relation to the strategy adopted for the
definition of clusters. In this way, the methods are organized into two major groups: partitional
and hierarchical (JAMES et al., 2013). In this work, we’re focused on the partitional methods.
The partitional methods aim to directly decompose objects into a set of disjoint or overlapping
clusters, obtaining a partition, which optimizes an objective function. Figure 3 illustrates the
difference between the results obtained from the different types of methods.

Let a data set Ω = {𝑤1, . . . , 𝑤𝑛}. The partitional clustering methods aim to partition this
set into a predefined number of 𝑐 clusters, where 𝑐 ≤ 𝑛. Usually, these clusters are constituted,
through the optimization of some objective function. There are two types of partitional methods:
hard and fuzzy ones. In hard clustering, it is assumed that clusters must form a partition 𝑄 of
the set Ω. This partition can be understood as a family of distinct and non-empty subsets Ω𝑖,
for 𝑖 = 1, . . . , 𝑐, of Ω. In this way, objects that belong to the same cluster as the partition are
fully related and objects that belong to distinct clusters are not related, such that:

1. Ω𝑖 ̸= ∅, 𝑖 = 1, . . . , 𝑐;

2. ∪𝑐
𝑖=1Ω𝑖 = Ω;
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Figure 3 – An illustration of clustering approaches

(a) Partitional clustering

(b) Hierarchical clustering

Source: (JAMES et al., 2013)

3. Ω𝑖 ∩ Ω𝑗 = ∅, 𝑖, 𝑗 = 1, . . . , 𝑐 and 𝑖 ̸= 𝑗.

Thus, in the hard approach, clusters are discrete entities, characterized by a set of properties
shared by their members. These clusters are clearly defined, mutually exclusive, and collectively
exhaustive. In this way, any object must exclusively belong to one, and only one, of the proposed
clusters. In many practical applications, however, a hard partition can be too restrictive, because
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the same object can share variables present in more than one cluster.
In that case, fuzzy partitional methods extend the notion of hard clustering, allowing to

associate an object with all clusters, using a membership degree, 𝑢𝑖𝑘 ∈ [0, 1], which represents
the membership coefficient of the 𝑘-th object in the 𝑖-th cluster by satisfying ∑︀𝑐

𝑖=1 𝑢𝑖𝑘 = 1∀𝑘

and ∑︀𝑛
𝑘=1 𝑢𝑖𝑘 < 𝑛 (BEZDEK, 1981). With the use of the fuzzy approach, the problem is then

characterized as a fuzzy clustering problem, whose objective is to obtain a fuzzy partition, of
an Ω data set.

Figure 4 illustrates the idea behind fuzzy clustering. The lines separate the dataset into three
hard clusters, while a fuzzy partitional algorithm could create three fuzzy clusters represented
by ellipses. Thus, the objects will have a membership degree 𝑢𝑖𝑘 in the interval [0, 1] for each
cluster. Note that the image does not faithfully characterize a fuzzy clustering, since all objects
belong to all clusters at the same time, with different degrees of membership. High membership
values indicate a high degree of association of an object to a cluster. It is worth mentioning
that a hard partition can be obtained from a fuzzy partition, by applying a threshold on the
membership values.

Figure 4 – Hard clusters versus fuzzy clusters

Source: (KAMOLOV; PARK, 2021)

Among the partitional clustering algorithms, there is a specific field with methods based on
the minimization of the square-error criterion, the sum of squared Euclidean distances (Equation
2.1) of points from their closest cluster centroid, is the most commonly used (SISODIA et al.,
2012). The most known methods in this scenario are K-Means (MACQUEEN, 1965), K-Medoids
or Partitioning Around Medoids (PAM) (KAUFMAN; ROUSSEEUW, 2009), K-Modes (HUANG,
1998), and Clustering Large Applications based on Randomized Search (CLARANS) (HE; XU;

DENG, 2005). In this work, as there is a focus on building algorithms that deal with qualitative
data, the K-Modes provides an extension of the mathematical problem deemed in the K-Means
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algorithm for such type of data. After the initial versions, adaptations for fuzzy algorithms were
proposed: Fuzzy C-Means (DUNN, 1973) and Fuzzy C-Modes (HUANG; NG, 1999).

Another adaptation proposed by the literature was the insertion of adaptive distances which
change at each algorithm iteration and can either be the same for all clusters (global adaptive
distances) or different from one cluster to another (local adaptive distances). This kind of
dissimilarity measure is suitable to learn the weights of the variables during the clustering
process, improving the performance of the algorithms (DIDAY; SIMON, 1976; DIDAY, 1977;
FERREIRA; CARVALHO, 2014).

In the next chapter, a set of algorithms based on qualitative data are proposed with the
insertion of adaptive distances as an extension of the K-Modes and Fuzzy C-Modes algorithms.
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3 FUZZY C-MODES CLUSTERING ALGORITHM WITH VARIABLE WEIGHT-

ING

This chapter provides a description of the proposed Fuzzy C-Modes clustering algorithm
with variable weighting.

3.1 OBJECTIVE FUNCTION OVERVIEW

The Fuzzy C-Modes Clustering algorithm (HUANG; NG, 1999) is defined from the minimiza-
tion of the following objective function

𝐽 =
𝑐∑︁

𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖), (3.1)

subject to ⎧⎪⎪⎨⎪⎪⎩
𝑢𝑖𝑘 ∈ [0, 1] ∀𝑖, 𝑘∑︀𝑐

𝑖=1 𝑢𝑖𝑘 = 1 ∀𝑘,

where 𝑢𝑖𝑘 are the fuzzy membership degrees of observation 𝑘 and cluster 𝑖, 𝑣𝑖 is the centroid of
cluster 𝑖 and 𝑚 ∈ (1,∞) is a parameter that controls the fuzziness of membership for each 𝑘.
In addition, Ψ(𝑥𝑘,𝑣𝑖) is the appropriate distance function for a given qualitative dataset. In the
simplest scenario, one may assume that Ψ(𝑥𝑘,𝑣𝑖) = ∑︀𝑝

𝑗=1 𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) (KAUFMAN; ROUSSEEUW,
2009), where

𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑥𝑘𝑗 = 𝑣𝑖𝑗

1, otherwise.

In this scenario with qualitative variables, it is necessary to adapt the way the similarity
(or dissimilarity) measures are calculated among the observations and centroids. In addition
to considering measures that have structure for qualitative variables, it is also necessary to
direct them to the types: binary, nominal, and ordinal. The proposed algorithm considers the
mode as the statistic used to determine the centroids for each cluster (HUANG; NG, 1999). The
definition for calculating the mode is following.

Definition 3.1. The mode for a set of 𝑘 observations measured by 𝑝 qualitative variables is

an object 𝑣 which minimizes
𝑛∑︁

𝑘=1
𝑑(𝑥𝑘𝑗, 𝑣), for a given 𝑗.
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Notice that 𝑣 might not be unique, because two or more categories of a variable can have
the same frequency. To calculate the mode described in Definition 3.1, it’s considered the
following proposition, considering initially a hard clustering.

Proposition 3.1. Let Ω be a set of 𝑛 objects characterized by the qualitative variables

𝐴1, 𝐴2, . . . , 𝐴𝑝 and DOM(𝐴𝑗) = {𝑎1
𝑗 , 𝑎

2
𝑗 , . . . , 𝑎

𝑛𝑗

𝑗 }, where 𝑛𝑗 is the number of categories

on variable 𝐴𝑗, for 1 ≤ 𝑗 ≤ 𝑝. It’s calculated the modes from the clusters represented by

𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑝) for 1 ≤ 𝑖 ≤ 𝑐. Then, the quantity
𝑐∑︁

𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖)

is minimized if and only if 𝑣𝑖𝑗 = 𝑎
(𝑟)
𝑗 ∈ DOM(𝐴𝑗), where 𝑢𝑖𝑘 = {0, 1} and 𝑎(𝑟)

𝑗 is the category

of variable 𝑗 with greater frequency. Also,

|{𝑢𝑖𝑘|𝑥𝑘𝑗 = 𝑎
(𝑟)
𝑗 , 𝑢𝑖𝑘 = 1}| ≥ |{𝑢𝑖𝑘|𝑥𝑘𝑗 = 𝑎

(𝑡)
𝑗 , 𝑢𝑖𝑘 = 1}|

1 ≤ 𝑡 ≤ 𝑛𝑗

1 ≤ 𝑗 ≤ 𝑝.

Here, |𝑥| denotes the number of elements in set Ω.

Proof. For a given matrix 𝑈 , all the inner sums of
𝑐∑︁

𝑖=1

[︃
𝑛∑︁
𝑘

𝑢𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖)
]︃

are independent and non-negative. Minimizing the quantity above is equivalent to minimizing
each inner sum. Thus, write the 𝑖-th inner sum as

𝑛∑︁
𝑘=1

𝑢𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) =
𝑛∑︁

𝑘=1
𝑢𝑖𝑘

𝑝∑︁
𝑗=1

𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗)

=
𝑝∑︁

𝑗=1

𝑛∑︁
𝑘=1

𝑢𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗)

=
𝑝∑︁

𝑗=1
(𝑛− |{𝑢𝑖𝑘|𝑥𝑘𝑗 = 𝑣𝑖𝑗, 𝑢𝑖𝑘 = 1}|)

=
𝑝∑︁

𝑗=1
𝑛

(︃
1 − |{𝑢𝑖𝑘|𝑥𝑘𝑗 = 𝑣𝑖𝑗, 𝑢𝑖𝑘 = 1}|

𝑛

)︃
.

The inner sum is minimized if and only if each term
(︁
1 − |{𝑢𝑖𝑘|𝑥𝑘𝑗=𝑣𝑖𝑗 ,𝑢𝑖𝑘=1}|

𝑛

)︁
is minimum for

1 ≤ 𝑗 ≤ 𝑝. Therefore, the term |{𝑢𝑖𝑘|𝑥𝑘𝑗 = 𝑣𝑖𝑗, 𝑢𝑖𝑘 = 1}| must be maximum.
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Therefore, by Definition 3.1 and Proposition 3.1, the vector of modes 𝑣𝑖 is defined by the
higher frequency categories 𝑎(𝑟)

𝑗 , 𝑗 ∈ [1, 𝑝], on the set of observations belonging to cluster 𝑖.
For the fuzzy version the constraint on 𝑢𝑖𝑘 is slacked such as 0 ≤ 𝑢𝑖𝑘 ≤ 1. With that in mind,
the definition of the 𝑢𝑖𝑘 is required besides the mode in the scenario where each observation
can belong to all clusters at the same instant.

Proposition 3.2. For 𝑚 > 1 and fixed centroids 𝑣𝑖, we have that

𝑢𝑖𝑘 =
{︃

𝑐∑︁
ℎ=1

[︃
Ψ(𝑥𝑘,𝑣𝑖)
Ψ(𝑥𝑘,𝑣ℎ)

]︃1/(𝑚−1)}︃−1

.

Proof. From the Lagrange multipliers, (STEWART, 2012), to find an optimum value, consider

𝐽(𝜌) =
𝑐∑︁

𝑖=1
𝑢𝑚

𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) − 𝜌(
𝑐∑︁

𝑖=1
𝑢𝑖𝑘 − 1),

that is stationary when the gradient is equal to 0, that is ∇𝐽(𝜌) =
[︁

𝜕
𝜕𝜌
𝐽(𝜌), 𝜕

𝜕𝑢𝑖𝑘
𝐽(𝜌)

]︁
= 0.

Thus, there’s the following system of equations:⎧⎪⎪⎨⎪⎪⎩
𝜕𝐽(𝜌)

𝜕𝜌
= ∑︀𝑐

𝑖=1 𝑢𝑖𝑘 − 1 = 0 (I)
𝜕𝐽(𝜌)
𝜕𝑢𝑠𝑡

= 𝑚(𝑢𝑠𝑡)𝑚−1Ψ(𝑥𝑡,𝑣𝑠) − 𝜌 = 0. (II)

(I) ⇒ 𝑚(𝑢𝑚−1
𝑠𝑡 )Ψ(𝑥𝑡,𝑣𝑠) − 𝜌 =0

𝑢𝑚−1
𝑠𝑡 = 𝜌

𝑚Ψ(𝑥𝑡,𝑣𝑠)

𝑢𝑠𝑡 =
(︃

𝜌

𝑚Ψ(𝑥𝑡,𝑣𝑠)

)︃ 1
(𝑚−1)

. (III)

(I) and (III) ⇒
𝑐∑︁

ℎ=1
𝑢ℎ𝑡 =

𝑐∑︁
ℎ=1

(︃
𝜌

𝑚Ψ(𝑥𝑡,𝑣ℎ)

)︃ 1
(𝑚−1)

⇒
(︂
𝜌

𝑚

)︂ 1
(𝑚−1)

𝑐∑︁
ℎ=1

(︃
1

𝑚Ψ(𝑥𝑡,𝑣ℎ)

)︃ 1
(𝑚−1)

= 1

(︂
𝜌

𝑚

)︂ 1
(𝑚−1)

= 1
∑︀𝑐

ℎ=1

(︃
1

𝑚Ψ(𝑥𝑡,𝑣ℎ)

)︃ 1
(𝑚−1)

.

Backing to (III),
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𝑢𝑠𝑡 =
(︂
𝜌

𝑚

)︂ 1
(𝑚−1)

(︃
1

𝑚Ψ(𝑥𝑡,𝑣𝑠)

)︃ 1
(𝑚−1)

= 1
∑︀𝑐

ℎ=1

(︃
1

𝑚Ψ(𝑥𝑡,𝑣ℎ)

)︃ 1
(𝑚−1)

(︃
1

𝑚Ψ(𝑥𝑡,𝑣𝑠)

)︃ 1
(𝑚−1)

=
{︃

𝑐∑︁
ℎ=1

[︃
Ψ(𝑥𝑘,𝑣𝑠)
Ψ(𝑥𝑘,𝑣ℎ)

]︃1/(𝑚−1)}︃−1

.

With the change of membership degrees in the fuzzy version, it is also necessary to define
the mode calculation for the scenario in which each observation belongs to all clusters at the
same time. Equation 3.3 shows how to get these modes.

Proposition 3.3. Let Ω be a set of 𝑛 objects characterized by the qualitative variables

𝐴1, 𝐴2, . . . , 𝐴𝑝 and DOM(𝐴𝑗) = {𝑎1
𝑗 , 𝑎

2
𝑗 , . . . , 𝑎

𝑛𝑗

𝑗 }, where 𝑛𝑗 is the number of categories

on variable 𝐴𝑗, for 1 ≤ 𝑗 ≤ 𝑝. It’s calculated the modes from the clusters represented by

𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑝) for 1 ≤ 𝑖 ≤ 𝑐. Then, the quantity
𝑐∑︁

𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖)

is minimized if and only if 𝑣𝑖𝑗 = 𝑎
(𝑟)
𝑗 ∈ DOM(𝐴𝑗), where 𝑢𝑖𝑘 = [0, 1] and 𝑎(𝑟)

𝑗 is the category

of variable 𝑗 with greater frequency. Also,

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑟)
𝑗

𝑢𝑚
𝑖𝑘 ≥

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑡)
𝑗

𝑢𝑚
𝑖𝑘

1 ≤ 𝑡 ≤ 𝑛𝑗

1 ≤ 𝑗 ≤ 𝑝.

Proof. For a given matrix 𝑈 , all the inner sums of
𝑐∑︁

𝑖=1

[︃
𝑛∑︁

𝑘=1
𝑢𝑚

𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖)
]︃

are independent and non-negative. Minimizing the quantity above is equivalent to minimizing
each inner sum. Thus, write the 𝑖-th inner sum as
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𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) =

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘

𝑝∑︁
𝑗=1

𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗)

=
𝑝∑︁

𝑗=1

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗)

=
𝑝∑︁

𝑗=1

(︃ 𝑛𝑗∑︁
𝑡=1

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑡)
𝑗

𝑢𝑚
𝑖𝑘 −

∑︁
𝑖

𝑥𝑘𝑗=𝑣𝑖𝑗

𝑢𝑚
𝑖𝑘

)︃
.

Once 𝑢𝑚
𝑖𝑘 is fixed and non-negative for 1 ≤ 𝑖 ≤ 𝑐 and 1 ≤ 𝑘 ≤ 𝑛, the quantity

𝑛𝑗∑︁
𝑡=1

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑡)
𝑗

𝑢𝑚
𝑖𝑘

is fixed and non-negative. Thereby, it follows that ∑︀𝑛
𝑘=1 𝑢

𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) is minimized if and only

if each term ∑︀
𝑖

𝑥𝑘𝑗=𝑣𝑖𝑗

𝑢𝑚
𝑖𝑘 is maximum.

3.1.1 Adaptive distance functions

Conventional clustering methods do not take into account the weights and relevance of
variables. That is, these methods consider that all variables are equally important for clustering
in the sense that they all have the same relevance weight. However, in most applications we
have to deal with, the available data sets have high dimensionality. Thus, some variables may
be irrelevant and, among the relevant ones, some may be more or less relevant than others
(FERREIRA; CARVALHO, 2014). Also, the relevance weight of each variable for each cluster
may be different. As a result, each cluster can have a different set of relevant variables. If
we consider there are differences in the relevance weights between the variables and calculate
these weights, then the clustering performance may be improved.

For inserting the weights into the clustering algorithm, consider the following distances:

(a) Non-adaptive distance:
Ψ(𝑥𝑘,𝑣𝑖) =

𝑝∑︁
𝑗=1

𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗). (3.2)

(b) Local adaptive distance with the constraint that the sum of the weights of the variables
for each cluster must be equal to one:

Ψ(𝑥𝑘,𝑣𝑖) =
𝑝∑︁

𝑗=1
(𝜆𝑖𝑗)𝛽𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗), (3.3)
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where 𝜆𝑖 = (𝜆𝑖1, . . . , 𝜆𝑖𝑝) is the weights vector related to cluster 𝑖 subject to⎧⎪⎪⎨⎪⎪⎩
𝜆𝑖𝑗 ∈ [0, 1], ∀𝑖, 𝑗∑︀𝑝

𝑗=1 𝜆𝑖𝑗 = 1, ∀𝑖.

And 𝛽 ∈ (1,∞) is the parameter that controls the degree of influence of the weight of
each variable to each cluster:

■ If 𝛽 → ∞ all the variables have the same influence on all clusters.

■ If 𝛽 → 1 then the influence of the weights of the variables will be the highest.

(c) Global adaptive with the constraint that the sum of the weights of the variables must be
equal to one:

Ψ(𝑥𝑘,𝑣𝑖) =
𝑝∑︁

𝑗=1
(𝜆𝑗)𝛽𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗), (3.4)

where 𝜆 = (𝜆1, . . . , 𝜆𝑝) is the weights vector subject to⎧⎪⎪⎨⎪⎪⎩
𝜆𝑗 ∈ [0, 1], ∀𝑗∑︀𝑝

𝑗=1 𝜆𝑗 = 1.

(d) Local adaptive distance with the constraint that the product of the weights of the
variables for each cluster must be equal to one:

Ψ(𝑥𝑘,𝑣𝑖) =
𝑝∑︁

𝑗=1
𝜆𝑖𝑗𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗), (3.5)

where 𝜆𝑖 = (𝜆𝑖1, . . . , 𝜆𝑖𝑝) is the weights vector related to cluster 𝑖 subject to⎧⎪⎪⎨⎪⎪⎩
𝜆𝑖𝑗 > 0, ∀𝑖, 𝑗∏︀𝑝

𝑗=1 𝜆𝑖𝑗 = 1, ∀𝑖.

(e) Global adaptive with the constraint that the product of the weights of the variables must
be equal to one:

Ψ(𝑥𝑘,𝑣𝑖) =
𝑝∑︁

𝑗=1
𝜆𝑗𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗), (3.6)

where 𝜆 = (𝜆1, . . . , 𝜆𝑝) is the weights vector subject to⎧⎪⎪⎨⎪⎪⎩
𝜆𝑗 > 0, ∀𝑗∏︀𝑝

𝑗=1 𝜆𝑗 = 1.
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From this point forward, all propositions presented form an integral part of the development
of this work. The Proposition 3.4 below is an extension of Proposition 3.3 when calculating
the mode for the scenarios where Ψ(𝑥𝑘,𝑣𝑖) can be defined as Equations 3.3, 3.4, 3.5 and 3.6.

Proposition 3.4. Let Ω be a set of 𝑛 objects characterized by the qualitative variables

𝐴1, 𝐴2, . . . , 𝐴𝑝 and DOM(𝐴𝑗) = {𝑎1
𝑗 , 𝑎

2
𝑗 , . . . , 𝑎

𝑛𝑗

𝑗 }, where 𝑛𝑗 is the number of categories

on variable 𝐴𝑗, for 1 ≤ 𝑗 ≤ 𝑝. It’s calculated the modes from the clusters represented by

𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑝) for 1 ≤ 𝑖 ≤ 𝑐. Then, the quantity
𝑐∑︁

𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖),

where Ψ(𝑥𝑘,𝑣𝑖) can be defined as Equations 3.3, 3.4, 3.5, and 3.6, is minimized if and only if

𝑣𝑖𝑗 = 𝑎
(𝑟)
𝑗 ∈ DOM(𝐴𝑗), where

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑟)
𝑗

𝑢𝑚
𝑖𝑘 ≥

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑡)
𝑗

𝑢𝑚
𝑖𝑘

1 ≤ 𝑡 ≤ 𝑛𝑗

1 ≤ 𝑗 ≤ 𝑝.

Proof. For the given matrices 𝑈 and 𝜆, all the inner sums of
𝑐∑︁

𝑖=1

[︃
𝑛∑︁

𝑘=1
𝑢𝑚

𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖)
]︃

are independent and non-negative. Minimizing the quantity above is equivalent to minimizing
each inner sum. Thus, write the 𝑖-th inner sum as

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) =

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘

𝑝∑︁
𝑗=1

𝜆𝑖𝑗𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) (similar for𝜆𝑖)

=
𝑝∑︁

𝑗=1
𝜆𝑖𝑗

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗)

=
𝑝∑︁

𝑗=1
𝜆𝑖𝑗

(︃ 𝑛𝑗∑︁
𝑡=1

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑡)
𝑗

𝑢𝑚
𝑖𝑘 −

∑︁
𝑖

𝑥𝑘𝑗=𝑣𝑖𝑗

𝑢𝑚
𝑖𝑘

)︃
.

Once 𝑢𝑚
𝑖𝑘 is fixed and non-negative for 1 ≤ 𝑖 ≤ 𝑐 and 1 ≤ 𝑘 ≤ 𝑛, the quantities

𝑛𝑗∑︁
𝑡=1

∑︁
𝑖

𝑥𝑘𝑗=𝑎
(𝑡)
𝑗

𝑢𝑚
𝑖𝑘,

𝑝∑︁
𝑗=1

𝜆𝑖𝑗

are fixed and non-negative. Thereby, it follows that ∑︀𝑛
𝑘=1 Ψ(𝑥𝑘,𝑣𝑖) is minimized if and only if

each term ∑︀
𝑖

𝑥𝑘𝑗=𝑣𝑖𝑗

𝑢𝑚
𝑖𝑘 is maximum.
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With the insertion of the weights, it is also necessary to update the definition of the
membership degrees 𝑢𝑖𝑘. To calculate the membership degrees, it’s considered the following
proposition.

Proposition 3.5. For 𝑚 > 1, 𝑣𝑖 and 𝜆 fixed, we have that

𝑢𝑖𝑘 =
{︃

𝑐∑︁
ℎ=1

[︃
Ψ(𝑥𝑘,𝑣𝑖)
Ψ(𝑥𝑘,𝑣ℎ)

]︃1/(𝑚−1)}︃−1

,

where Ψ(𝑥𝑘,𝑣𝑖) can be defined as Equations 3.3, 3.4, 3.5, and 3.6.

Proof. From the Lagrange multipliers (STEWART, 2012), to find a optimum value, consider

𝐽(𝜌) =
𝑐∑︁

𝑖=1
𝑢𝑚

𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) − 𝜌(
𝑐∑︁

𝑖=1
𝑢𝑖𝑘 − 1),

that is stationary when the gradient is equal to 0, that is ∇𝐽(𝜌) =
[︁

𝜕
𝜕𝜌
𝐽(𝜌), 𝜕

𝜕𝑢𝑖𝑘
𝐽(𝜌)

]︁
= 0.

Thus, there’s the following system of equations:⎧⎪⎪⎨⎪⎪⎩
𝜕𝐽(𝜌)

𝜕𝜌
= ∑︀𝑐

𝑖=1 𝑢𝑖𝑘 − 1 = 0 (I)
𝜕𝐽(𝜌)
𝜕𝑢𝑠𝑡

= 𝑚(𝑢𝑠𝑡)𝑚−1Ψ(𝑥𝑡,𝑣𝑠) − 𝜌 = 0. (II)

By the proof of Proposition 3.2, we can assume that the quantity Ψ(𝑥𝑡,𝑣𝑠) can be as in
Equations 3.3, 3.4, 3.5 or 3.6 and the same expressions obtained will be the optimum and
maximum point for the problem.

Besides determining the expressions for the centroids and membership degrees, that were
analogs to the non-adaptive scenario, it’s necessary to define the quantities that represent the
weights used in Equations 3.3, 3.4, 3.5 and 3.6.

Proposition 3.6. For 𝑣𝑖 and 𝑈 fixed, and ∑︀𝑝
𝑗=1 𝜆𝑖𝑗 = 1:

1. For 𝛽 > 1 or 𝛽 ≤ 0, we have that

𝜆𝑖𝑗 =
[︃

𝑠∑︁
𝑔=1

(︃
𝐽𝑖𝑗

𝐽𝑖𝑔

)︃1/(𝛽−1)]︃−1

,

where 𝐽𝑖𝑗 = ∑︀𝑛
𝑘=1 𝑢

𝑚
𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) for 𝐽𝑖𝑗 ̸= 0, and 𝑠 is the number of variables which

𝐽𝑖𝑗 ̸= 0.

2. For 𝛽 = 1, we have that

𝜆𝑠𝑡 = 1 and 𝜆𝑖𝑗 = 0 for 𝑠𝑡 ̸= 𝑖𝑗,

where 𝐽𝑠𝑡 ≤ 𝐽𝑖𝑗.
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Proof. Consider,
𝑐∑︁

𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘Ψ(𝑥𝑘,𝑣𝑖) =

𝑐∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑚
𝑖𝑘

𝑝∑︁
𝑗=1

𝜆𝛽
𝑖𝑗𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗)

=
𝑐∑︁

𝑖=1
𝐽𝑖, where 𝐽𝑖 =

𝑝∑︁
𝑗=1

𝜆𝛽
𝑖𝑗𝐽𝑖𝑗.

Thus, the problem becomes to minimize 𝐽𝑖.
If 𝐽𝑖𝑗 = 0, the 𝑗-th variable has a unique category in each cluster, which leads to a

degenerated solution. Thus, it’s necessary to set 𝜆𝑖𝑗 = 0 for all variables in which 𝐽𝑖𝑗 = 0. For
the 𝑠 left variables (𝑠 ≤ 𝑝),

𝐹 (𝜌) =
𝑠∑︁

𝑗=1
𝜆𝛽

𝑖𝑗𝐽𝑖𝑗 − 𝜌

(︃
𝑠∑︁

𝑗=1
𝜆𝑖𝑗 − 1

)︃

from the Lagrange multipliers (STEWART, 2012). 𝐹 (𝜌) is stationary when the gradient is
equal to 0, that is ∇𝐹 (𝜌) =

[︁
𝜕
𝜕𝜌
𝐹 (𝜌), 𝜕

𝜕𝜆𝑖𝑗
𝐹 (𝜌)

]︁
= 0. Thus, there’s the following system of

equations: ⎧⎪⎪⎨⎪⎪⎩
𝜕𝐹 (𝜌)

𝜕𝜌
= ∑︀𝑠

𝑗=1 𝜆𝑖𝑗 − 1 = 0 (I)
𝜕𝐹 (𝜌)
𝜕𝜆𝑖𝑡

= 𝛽𝜆
(𝛽−1)
𝑖𝑡 𝐽𝑖𝑡 − 𝜌 = 0. (II)

(II) ⇒ 𝜆𝑖𝑡 =
(︃

𝜌

𝛽𝐽𝑖𝑡

)︃1/(𝛽−1)

(III)

(I) and (III) ⇒
𝑠∑︁

𝑤=1
𝜆𝑖𝑤 =

𝑠∑︁
𝑤=1

(︃
𝜌

𝛽𝐽𝑖𝑤

)︃1/(𝛽−1)

=
(︃
𝜌

𝛽

)︃1/(𝛽−1) 𝑠∑︁
𝑤=1

(︃
1
𝐽𝑖𝑤

)︃1/(𝛽−1)

⇒
(︃
𝜌

𝛽

)︃1/(𝛽−1)

= 1
∑︀𝑠

𝑤=1

(︃
1

𝐽𝑖𝑤

)︃1/(𝛽−1) .

Backing to (III),

𝜆𝑖𝑡 = 1
∑︀𝑠

𝑤=1

(︃
1

𝐽𝑖𝑤

)︃1/(𝛽−1)

(︃
1
𝐽𝑖𝑡

)︃1/(𝛽−1)

=
[︃

𝑠∑︁
𝑤=1

(︃
𝐽𝑖𝑡

𝐽𝑖𝑤

)︃1/(𝛽−1)]︃−1

.
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For 𝛽 = 1, we have that
𝐽𝑖 =

𝑝∑︁
𝑗=1

𝜆𝑖𝑗𝐽𝑖𝑗.

It follows that ∑︀𝑝
𝑗=1 𝜆𝑖𝑗𝐽𝑖𝑗 ≥ 𝐽𝑠𝑡, where 𝐽𝑠𝑡 ≤ 𝐽𝑖𝑗 because ∑︀𝑝

𝑗=1 𝜆𝑖𝑗((𝐽𝑖𝑗 − 𝐽𝑠𝑡) ≥ 0 (all
the non-negative terms). Thus,

⇒
𝑝∑︁

𝑗=1
𝜆𝑖𝑗(𝐽𝑖𝑗 − 𝐽𝑠𝑡) =

𝑝∑︁
𝑗=1

𝜆𝑖𝑗𝐽𝑖𝑗 −
𝑝∑︁

𝑗=1
𝜆𝑖𝑗𝐽𝑠𝑡

=
𝑝∑︁

𝑗=1
𝜆𝑖𝑗𝐽𝑖𝑗 − 𝐽𝑠𝑡

𝑝∑︁
𝑗=1

𝜆𝑖𝑗

=
𝑝∑︁

𝑗=1
𝜆𝑖𝑗𝐽𝑖𝑗 − 𝐽𝑠𝑡.

Then, 𝜆𝑠𝑡 = 1 and 𝜆𝑖𝑗 = 0 ∀𝑖𝑗 ̸= 𝑠𝑡.

Proposition 3.7. For 𝑣𝑖 and 𝑈 fixed, and ∑︀𝑝
𝑗=1 𝜆𝑗 = 1

1. For 𝛽 > 1 or 𝛽 ≤ 0, we have that

𝜆𝑗 =
[︃

𝑠∑︁
𝑔=1

(︃∑︀𝑐
𝑖=1 𝐽𝑖𝑗∑︀𝑐
𝑖=1 𝐽𝑖𝑔

)︃1/(𝛽−1)]︃−1

,

where 𝐽𝑖𝑗 = ∑︀𝑛
𝑘=1 𝑢

𝑚
𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) for 𝐽𝑖𝑗 ̸= 0, and 𝑠 is the number of variables which

𝐽𝑖𝑗 ̸= 0.

2. For 𝛽 = 1, we have that

𝜆𝑡 = 1 and 𝜆𝑗 = 0 for 𝑡 ̸= 𝑗,

where 𝐽𝑡 ≤ 𝐽𝑗.

Proof. The result follows from Proposition 3.6. Notice that 𝜆𝑗 can be written as

𝜆𝑗 =
{︃

𝑠∑︁
𝑔=1

[︃
𝐽𝑖(𝜆𝑖1, . . . , 𝜆𝑖𝑗)
𝐽𝑖(𝜆𝑖1, . . . , 𝜆𝑖𝑔)

]︃1/(𝛽−1)}︃−1

.

Proposition 3.8. For 𝑣𝑖 and 𝑈 fixed, and ∏︀𝑝
𝑗=1 𝜆𝑖𝑗 = 1, we have that

𝜆𝑖𝑗 =
(∏︀𝑠

𝑔=1 𝐽𝑖𝑔)1/𝑠

𝐽𝑖𝑗

,

where 𝐽𝑖𝑗 = ∑︀𝑛
𝑘=1 𝑢

𝑚
𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) for 𝐽𝑖𝑗 ̸= 0, and 𝑠 is the number of variables which 𝐽𝑖𝑗 ̸= 0.
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Proof. If 𝐽𝑖𝑗 = 0, the 𝑗-th variable has a unique category in each cluster, which leads to a
degenerated solution. Thus, it’s necessary to set 𝜆𝑖𝑗 = 0 for all variables in which 𝐽𝑖𝑗 = 0. For
the 𝑠 left variables (𝑠 ≤ 𝑝),

𝐹 (𝜌) =
𝑠∑︁

𝑗=1
𝜆𝑖𝑗𝐽𝑖𝑗 − 𝜌

(︃
𝑠∏︁

𝑗=1
𝜆𝑖𝑗 − 1

)︃

from the Lagrange multipliers (STEWART, 2012). 𝐹 (𝜌) is stationary when the gradient be
equal to 0, that is ∇𝐹 (𝜌) =

[︁
𝜕
𝜕𝜌
𝐹 (𝜌), 𝜕

𝜕𝜆𝑖𝑗
𝐹 (𝜌)

]︁
= 0. Thus, there’s the following system of

equations: ⎧⎪⎪⎨⎪⎪⎩
𝜕𝐹 (𝜌)

𝜕𝜌
= ∏︀𝑠

𝑗=1 𝜆𝑖𝑗 − 1 = 0 (I)
𝜕𝐹 (𝜌)
𝜕𝜆𝑖𝑡

= 𝜆𝑖𝑡𝐽𝑖𝑡 − 𝜌 = 0. (II)

(II) ⇒ 𝜆𝑖𝑡 = 𝜌

𝐽𝑖𝑡

(III)

(I) and (III) ⇒
𝑠∏︁

𝑤=1

𝜌

𝐽𝑖𝑤

= 𝜌𝑠∏︀𝑠
𝑤=1 𝐽𝑖𝑤

= 1

⇒ 𝜌𝑠 =
𝑠∏︁

𝑤=1
𝐽𝑖𝑤

𝜌 = (
𝑠∏︁

𝑤=1
𝐽𝑖𝑤)(1/𝑠)

Backing to (III),
𝜆𝑖𝑡 = (∏︀𝑠

𝑤=1 𝐽𝑖𝑤)1/𝑠

𝐽𝑖𝑡

.

Proposition 3.9. For 𝑣𝑖 and 𝑈 fixed, and ∏︀𝑝
𝑗=1 𝜆𝑗 = 1, we have that

𝜆𝑗 =

[︃∏︀𝑠
𝑔=1(

∑︀𝑐
𝑖=1 𝐽𝑖𝑔)1/𝑠

]︃
∑︀𝑐

𝑖=1 𝐽𝑖𝑗

,

where 𝐽𝑖𝑗 = ∑︀𝑛
𝑘=1 𝑢

𝑚
𝑖𝑘𝜓(𝑥𝑘𝑗, 𝑣𝑖𝑗) for 𝐽𝑖𝑗 ̸= 0, and 𝑠 is the number of variables which 𝐽𝑖𝑗 ̸= 0.

Proof. The result follows from Proposition 3.8.
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3.1.2 Algorithm

The Fuzzy C-modes algorithm with variable weighting is summarized in Algorithm 1. Notice
that the fuzzy version is easily turned into a hard version by setting the constraints for the
membership degrees 𝑢𝑖𝑘 = {0, 1} and 𝑚 → 1.

According to the propositions in this chapter, the computational complexity of the Algorithm
1 is 𝑂(𝑇𝐶𝑁𝑃 ), where 𝑇 is the total number of iterations required, and 𝑁 , 𝑃 , 𝐶 indicate the
number of objects, variables, and clusters respectively. For storage, it needed memory to keep:

• The dataset objects (𝑁𝑃 );

• The membership matrix (𝐶𝑁);

• The variable weight matrix (𝐶𝑃 ).
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Algorithm 1 Fuzzy C-Modes with variable weighting Algorithm
Input

The set Ω = {𝑤1, . . . , 𝑤𝑛};
The number 𝑐 of clusters (2 ≤ 𝑐 ≤ 𝑛);
The parameter 𝑇 (maximum of iterations);
The parameter 𝑡* (counter of iterations);
The threshold 𝜖 > 0 and 𝜖 ≪ 1.

Initialization
Set 𝑡* = 0;
Randomly select 𝑐 distinct centroids 𝑣𝑖 ∈ Ω with 𝑖 = {1, . . . , 𝑐};
Randomly initialize the matrix of membership degrees 𝑈 such that 𝑢𝑖𝑘 ≥ 0 and∑︀𝑐

𝑖=1 𝑢𝑖𝑘 = 1;
Initialize the matrix of relevance weights 𝜆 with the restriction as in Equations 3.2, 3.3,
3.4, 3.5 or 3.6;
Compute the 𝐽 according to the Equation 3.1.

Repeat
Set 𝐽𝑡*−1 = 𝐽𝑡* ;
Set 𝑡* = 𝑡* + 1.

1. Representation
For 𝑖 = 1, . . . , 𝑐 and 𝑗 = 1, . . . , 𝑝, compute the component 𝑣𝑖𝑗 of the centroid
𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑝) according to the Proposition 3.4.

2. Weighting
Compute the elements 𝜆𝑖𝑗 (or 𝜆𝑗) of the matrix of relevance weights 𝜆, according
to Propositions 3.6, 3.8, 3.7, and 3.9.

3. Allocation
Compute the elements 𝑢𝑖𝑘 of the matrix of membership degrees 𝑈 , according to
the Proposition 3.5.

Compute the 𝐽𝑡* according to the Equation 3.1;
Until |𝐽𝑡* − 𝐽𝑡*−1| < 𝜖 or 𝑡* > 𝑇 .
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4 EXPERIMENTAL EVALUATION

This chapter provides the performance evaluation of the proposed algorithms and a com-
parison with literature methods. A series of experiments were performed with various datasets,
including synthetic and real ones. A set of measures used to evaluate both hard and fuzzy
partition algorithms (RODRíGUES, 2018) are described in the following sections. The measures
in this work are in the context of two types of indexes: internal and external (LIU et al., 2010).

4.1 INTERNAL INDEXES

Internal indexes obtain the quality of clustering from the information of the set Ω itself,
without any external information. Usually, an internal index analyzes whether the positions of
objects in an obtained clustering match the proximity matrix 𝑃 (JAIN; DUBES, 1988). Therefore,
in this case, the method is evaluated by measuring the deviation between the structure generated
by it and the original set Ω. This type of index is most used in the context of real data.

4.1.1 Partition coefficient

Given a membership matrix 𝑈 , with 𝑛 objects and 𝑐 clusters as dimensions, it was attempted
to define a performance measure based on minimizing the overall content of pairwise fuzzy
intersection in the partition matrix 𝑈 . (BEZDEK, 1981) proposed a clustering validity index for
fuzzy clustering named Partition Coefficient (PC). The index was defined as

𝑉𝑃 𝐶 = 1
𝑛

𝑐∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑢2
𝑖𝑘. (4.1)

The PC index indicates the average relative amount of membership sharing done between pairs
of fuzzy subsets in 𝑈 , by combining into a single number, the average contents of pairs of
algebraic products. The index values range in [1/𝑐, 1], for 𝑐 clusters, the closer the value of PC
to 1, the harder are the clustering partitions.

4.1.2 Partition entropy coefficient

(BEZDEK, 1975) proposed the Partition Entropy (PE) defined as:

𝑉𝑃 𝐸 = − 1
𝑛

𝑐∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑢𝑖𝑘 log 𝑢𝑖𝑘. (4.2)
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The PE index is a scalar measure of the amount of fuzziness in a given 𝑈 . The PE index values
range in [0, log 𝑐], the closer the value of PE to 0, the harder are the clustering partitions. The
index value close to the upper bound indicates the absence of any clustering structure in the
datasets or the inability of the algorithm to extract it.

4.1.3 Modified partition coefficient

Both PC and PE possess monotonic evolution tendencies with the number of clusters.
According to (BEZDEK, 1981), that characteristic can be attributed to their apparent mono-
tonicity and an extent, to the heuristic nature of the rationale underlying its formulation. The
modification of the 𝑉𝑃 𝐶 index can reduce the monotonic tendency and is defined as

𝑉𝑀𝑃 𝐶 = 1 − 𝑐

𝑐− 1(1 − 𝑉𝑃 𝐶). (4.3)

The range of the MPC index is the unit interval [0, 1], where MPC = 0 corresponds to maximum
fuzziness and MPC = 1 to a hard partition.

4.1.4 Silhouette index

To define this criterion, consider a data object 𝑥𝑘 belonging to cluster 𝑖 ∈ {1, . . . , 𝑐}. In
the context of hard partitions produced by a centroid-based clustering algorithm. This means
that the object 𝑥𝑘 is closer to the centroid of cluster 𝑖 than to any other centroid. Let the
average distance of object 𝑥𝑖 to all other objects belonging to cluster 𝑖 be denoted by 𝑎𝑖𝑘. Also,
let the average distance of this object to all objects belonging to another cluster 𝑠, 𝑠 ̸= 𝑖, be
called by 𝑑𝑠𝑘. Finally, let 𝑏𝑖𝑘 be the minimum 𝑑𝑠𝑘 computed over 𝑠 = 1, . . . , 𝑐, which represents
the dissimilarity of object 𝑥𝑘 to its closest neighboring cluster. Then, the silhouette of object
𝑥𝑘 is defined as

𝑠𝑘 = 𝑏𝑖𝑘 − 𝑎𝑖𝑘

𝑚𝑎𝑥(𝑎𝑖𝑘, 𝑏𝑖𝑘) , (4.4)

where the denominator is used just as a normalization term. The higher 𝑠𝑘, the better the
assignment of object 𝑥𝑘 to cluster 𝑖. In case 𝑖 is a singleton, then the silhouette of this object
is defined as 𝑠𝑘 = 0. This prevents the Silhouette index, defined as the average of 𝑠𝑘 over
𝑘 = 1, . . . , 𝑛, to find the trivial solution 𝑐 = 𝑛, with the object of the dataset forming a cluster
on its own. This way, the best partition is achieved when the S is maximized, which implies
minimizing the intra-cluster distance (𝑎𝑖𝑘) while maximizing the inter-cluster distance (𝑏𝑖𝑘)
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(HRUSCHKA; CASTRO; CAMPELLO, 2004).

S = 1
𝑛

𝑛∑︁
𝑘=1

𝑠𝑘. (4.5)

4.2 EXTERNAL INDEXES

External indexes evaluate a clustering according to external information, usually a researcher’s
intuition about the structure present in the data or a cluster built by a domain expert. In this
case, the result of the method is evaluated by comparing it with a predefined structure, which
is imposed on the set Ω, and which represents the actual structure of the data in clusters.

4.2.1 Adjusted Rand index

The Adjusted Rand Index (ARI) is the corrected-for-chance version of the Rand Index
(RAND, 1971). Though the Rand index may only yield a value between 0 and 1, the ARI can
yield negative values if the index is less than the expected index (HUBERT; ARABIE, 1985).
The Adjusted Rand Index evaluates how close are two partitions: a prior partition and a final
partition obtained from a clustering algorithm.

The index values on the interval [−1, 1] indicate the perfect matching between the two
partitions, when 1 is observed, and a random matching when 0 (or negative) is observed. Let
𝐴 = {𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑅} and 𝐵 = {𝑏1, . . . , 𝑏𝑗, . . . , 𝑏𝑆} be two partitions of the same data
having respectively 𝑅 and 𝑆 clusters. The Adjusted Rand Index is

𝐴𝑅𝐼 =
∑︀𝑅

𝑖=1
∑︀𝑆

𝑗=1

(︁
𝑛𝑖𝑗

2

)︁
−
(︁

𝑛
2

)︁−1∑︀𝑅
𝑖=1

(︁
𝑛𝑖.

2

)︁∑︀𝑆
𝑗=1

(︁
𝑛.𝑗

2

)︁
1
2

[︁∑︀𝑅
𝑖=1

(︁
𝑛𝑖.

2

)︁
+∑︀𝑆

𝑗=1

(︁
𝑛.𝑗

2

)︁]︁
−
(︁

𝑛
2

)︁−1∑︀𝑅
𝑖=1

(︁
𝑛𝑖.

2

)︁∑︀𝑆
𝑗=1

(︁
𝑛.𝑗

2

)︁ , (4.6)

where
(︁

𝑛
2

)︁
= 𝑛(𝑛−1)

2 , 𝑛𝑖𝑗 represents the number of objects that are in partition 𝑎𝑖 and 𝑏𝑗 . While,
𝑛𝑖. and 𝑛.𝑗 represents the number of objects that are in partition 𝑎𝑖 and 𝑏𝑗, respectively.

4.3 PARAMETERS AND ALGORITHM SETTINGS

To evaluate the performance of the proposed algorithms a series of experiments were
performed with various datasets, synthetic and real ones. Also, for each dataset considered
there is a comparison of the fuzzy and hard versions and the variable-weighted versions. For
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each dataset, the PC (4.1), PE (4.2), and MPC (4.3) indexes were computed for the fuzzy
versions and the ARI (4.6) and S (4.5) indexes were computed for the hard versions in the
framework of a Monte Carlo (HAMMERSLEY, 2013) simulation with 100 replicas. In each replica,
the clustering algorithms were run, until the convergence to a stationary value of the adequacy
criterion, 100 times, and the best result for each method was selected according to the adequacy
criterion. The fuzziness parameter 𝑚 and the degree of influence parameter 𝛽 were set equal
to 2 to limit the search and evaluation space of the algorithms. It is expected that the variation
of these parameters may lead to different results and characterizations of the clustering. We
set 𝜖 = 10−10 as the tolerance for the convergence of the adequacy criterion and 𝑇 = 100 as
the number of iterations. From the fuzzy partitions given by these clustering algorithms, it is
obtained a hard partition by assigning each object to a hard cluster, allowing the computation of
the ARI thereafter (FERREIRA; CARVALHO, 2014). The hard partition is created by assigning an
object 𝑥𝑘 to a cluster 𝑖 if 𝑢𝑖𝑘 = maxℎ(𝑢ℎ𝑘), for 1 ≤ ℎ ≤ 𝑐. The Algorithm 1 was implemented
in the R programming language (R Core Team, 2023) and is available via package 1.

4.4 EXPERIMENTS ON SYNTHETIC DATASETS

The synthetic datasets in this section followed the rationale presented in (MINGOTI; MATOS,
2012), in which the authors present an intense simulation study, based on Monte Carlo
experiments, to compare five important qualitative methods. The simulated data were generated
in order to offer different degrees of difficulty for the algorithms, on different types of data. In
total, 8 datasets were generated for different scenarios. Such scenarios can be classified into 2
general cases, with the following differentiating characteristics: the level of dispersion of the
variables and, consequently, the level of superposition (overlapping) of classes.

The level of dispersion concerns the frequency distribution of the categories of variables,
for each of the classes, while the level of superposition is related to the constructed similarities
between classes. The more similar the classes are, variables with equal dispersion for each of
the classes, the greater the overlap between them. That is, a certain category of a variable
with the same frequency in different classes. This characteristic imposed on the data makes
the clustering problem more difficult to be solved by the algorithms of the methods.

In addition to these characteristics, the scenarios differ from each other by the number
of categories’ variables, which vary between 2, 3, 4, and 5. There are situations in which the
1 Available at https://github.com/gabrielteotonio/cModes.

https://github.com/gabrielteotonio/cModes
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quantity of categories is the same for all, for a part, or, for no variables. In addition, it varies
also the degree of control over the process (number of fixed variables), which is 50% of the
variables for every dataset. So many scenarios were outlined, trying to expose the methods to
the most diverse types of data. The main motivation for creating the different scenarios is to
compare the same configuration in relation to the number of classes, variables, and categories
with the absence or presence of overlapping. This allows the generalization of the results and a
more detailed analysis of the entire simulation process. The scenarios used are presented next.

1. Without overlapping
It was created 4 datasets for this scenario with the following configurations:

• Number of classes: 2; Number of variables: 2; Overlapping degree: no overlapping in
the first variable; Number of categories on the remaining variables: 2 (Case 1 - I);

• Number of classes: 3; Number of variables: 2; Overlapping degree: no overlapping
in the first variable; Number of categories on the remaining variables: 5 (Case 1 -

II);

• Number of classes: 3; Number of variables: 4; Overlapping degree: no overlapping
in the first and second variables; Number of categories on the remaining variables:
5 (Case 1 - III);

• Number of classes: 5; Number of variables: 4; Overlapping degree: no overlapping
in the first and second variables; Number of categories on the remaining variables:
5 (Case 1 - IV).

2. With overlapping
It was created 4 datasets for this scenario with the following configurations:

• Number of classes: 2; Number of variables: 2; Overlapping degree: overlapping in
the first variable; Number of categories on the remaining variables: 2 (Case 2 - I);

• Number of classes: 3; Number of variables: 2; Overlapping degree: overlapping in
the first variable; Number of categories on the remaining variables: 5 (Case 2 - II);

• Number of classes: 3; Number of variables: 4; Overlapping degree: overlapping in
the first and second variables; Number of categories on the remaining variables: 5
(Case 2 - III);
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• Number of classes: 5; Number of variables: 4; Overlapping degree: overlapping in
the first and second variables; Number of categories on the remaining variables: 5
(Case 2 - IV).

Notice that for every dataset, 50% of the variables are deterministic to ensure the overlapping
degree of the variables’ categories, and consequently, the superposition among the classes.
The number of observations in each dataset generated is determined by the number of classes
defined, 50 observations for each class. Also, it’s assumed that all the variables in the synthetic
datasets are nominal. In the following section, it’s described the method used to generate the
non-deterministic variables for the creation of the datasets.

4.4.1 Qualitative random variables generator

In this work, the beta distribution is adopted for generating the non-deterministic variables,
according to (MINGOTI; MATOS, 2012) which set a prior empirical distribution with the desired
behavior and then applies the inverse transform method. Thus, for each class 𝑐 and variable 𝑗,
with 𝑗 ∈ {1, . . . , 𝑝}, let 𝑐𝑡𝑗 be a possible category of 𝐴𝑗 , where 𝑐𝑡𝑗 ∈ DOM(𝐴𝑗). The steps for
the random variables generation, by using the beta distribution, are the following:

1. Determine the probability of occurrence of each of the categories of the variable 𝐴𝑗 , 𝑝𝑐𝑡𝑗
,

obtained as occurrences of the Beta(1;0.1) distribution (GUPTA; NADARAJAH, 2004);

2. Normalize, obtaining the new probabilities 𝑝*
𝑐𝑡𝑗

. So, P[𝐴𝑗 = 𝑐𝑡𝑗 ] = 𝑝*
𝑐𝑡𝑗

, ∀𝑐𝑡𝑗 ∈ DOM(𝐴𝑗)

and ∑︀𝑐𝑡𝑗
𝑝*

𝑐𝑡𝑗
= 1;

3. Randomly generate the observations of the distribution of 𝑝*
𝑐𝑡𝑗

. These observations are
equivalent to the occurrences of the categories of the variable 𝐴𝑗.

For step 3, the inverse transformation method is used for discrete variables, which consists
of:

1. From the probabilities 𝑝*
𝑐𝑡𝑗

, find the cumulative distribution;

2. Generate a random number 𝑈 , from the Uniform(0;1) distribution (ROSS, 2010);
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3. Compare the obtained value 𝑈 and assign it to the appropriate category of 𝐴𝑗, that is,

𝐴𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐1𝑗, if 0 ≤ 𝑈 ≤ 𝑝*
𝑐1𝑗

𝑐2𝑗, if 𝑝*
𝑐1𝑗
< 𝑈 ≤ 𝑝*

𝑐1𝑗
+ 𝑝*

𝑐2𝑗

...

𝑐𝑡𝑗, if 𝑝*
𝑐1𝑗

+ · · · + 𝑝*
𝑐(𝑡−1)𝑗

< 𝑈 ≤ 1

.

4.4.2 Results and analysis

The results obtained by the executions of the algorithm versions are following, separated by
dataset scenarios.

4.4.2.1 Non-overlapping datasets

Tables 1 and 2 show the evaluation metrics results for the datasets with 2 variables. Among
the hard algorithm versions, the methods with adaptive distances usage perform worst than the
classical methods. The results for the fuzzy algorithm versions are quite different. In Case 1 - I,
there’s no performance difference between the proposed ones and the classical ones. On the
other hand, in Case 1 - II, the fuzzy proposed algorithms performed better than the classical
method for all internal evaluation metrics. The fuzzy version with local adaptive-sum distance
has the best performance.

Table 1 – Algorithm evaluation metrics results for non-overlapping dataset Case 1 - I

Version ARI S PC PE MPC
k-modes 1 0.6620 - - -

fuzzy c-modes 0.2630 - 0.7650 0.3258 0.5300
k-modes with local adaptive-sum 0.3080 0.4426 - - -

k-modes with local adaptive-product 0.3080 0.4426 - - -
k-modes with global adaptive-sum 0.3070 0.3567 - - -

k-modes with global adaptive-product 0.1850 0.3710 - - -
fuzzy c-modes with local adaptive-sum 0.3080 - 0.7688 0.3220 0.5376

fuzzy c-modes with local adaptive-product 0.3080 - 0.7660 0.3248 0.5319
fuzzy c-modes with global adaptive-sum 0.3066 - 0.7650 0.3258 0.5300

fuzzy c-modes with global adaptive-product 0.3296 - 0.7650 0.3258 0.5300

Source: The author (2023)

For Case 1 - III and Case 1 - IV the results are similar to Case 1 - II on the hard and fuzzy
algorithm versions, as in Tables 3 and 4. And the fuzzy version with local adaptive-sum has
the best performance again, and in Case 1 - IV it has scored the theoretical bound of the
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evaluation metrics. Among the cases for non-overlapping datasets, Case 1 - I was the only
one without improvement when considering the adaptive distances. It may be related to the
number of categories on the random variables, which was 2 for this particular case, while it
was equal to 5 for the remaining.

The ARI values for all Case I scenarios show that the classical methods perform better than
the proposed ones. In the latter three scenarios, the gap between the classical hard and fuzzy
is smaller. For the proposed methods, there’s little fluctuation among the weighting settings
on each hard and fuzzy algorithm. Except for fuzzy versions in Case 1 - II, wherein the local
adaptive versions overcome the global adaptive ones.

Table 2 – Algorithm evaluation metrics results for non-overlapping dataset Case 1 - II

Version ARI S PC PE MPC
k-modes 0.6840 0.3890 - - -

fuzzy c-modes 0.5445 - 0.5398 0.7616 0.3098
k-modes with local adaptive-sum 0.2460 0.0882 - - -

k-modes with local adaptive-product 0.2580 0.0895 - - -
k-modes with global adaptive-sum 0.2710 0.1109 - - -

k-modes with global adaptive-product 0.2490 0.1017 - - -
fuzzy c-modes with local adaptive-sum 0.4067 - 0.7006 0.4153 0.5509

fuzzy c-modes with local adaptive-product 0.4067 - 0.6937 0.4247 0.5406
fuzzy c-modes with global adaptive-sum 0.2415 - 0.6933 0.4251 0.5400

fuzzy c-modes with global adaptive-product 0.2468 - 0.6933 0.4251 0.5400

Source: The author (2023)

Table 3 – Algorithm evaluation metrics results for non-overlapping dataset Case 1 - III

Version ARI S PC PE MPC
k-modes 0.9410 0.5138 - - -

fuzzy c-modes 0.9009 - 0.4628 0.8983 0.1942
k-modes with local adaptive-sum 0.2460 0.0929 - - -

k-modes with local adaptive-product 0.2470 0.0836 - - -
k-modes with global adaptive-sum 0.2510 0.0833 - - -

k-modes with global adaptive-product 0.2430 0.0691 - - -
fuzzy c-modes with local adaptive-sum 0.2367 - 0.7800 0.3443 0.6700

fuzzy c-modes with local adaptive-product 0.3554 - 0.6965 0.4496 0.5447
fuzzy c-modes with global adaptive-sum 0.2418 - 0.7158 0.4157 0.5737

fuzzy c-modes with global adaptive-product 0.2435 - 0.7158 0.4157 0.5737

Source: The author (2023)

4.4.2.2 Overlapping datasets

Tables 5 and 6 show the evaluation metrics results for the datasets with 2 variables. Among
the hard algorithm versions, the methods with adaptive distances usage perform worst than
the classical methods. However, the results for the fuzzy algorithm versions are different. In



51

Table 4 – Algorithm evaluation metrics results for non-overlapping dataset Case 1 - IV

Version ARI S PC PE MPC
k-modes 0.8110 0.4178 - - -

fuzzy c-modes 0.5422 - 0.3075 1.3879 0.1344
k-modes with local adaptive-sum 0.0595 -0.0012 - - -

k-modes with local adaptive-product 0.0718 -0.0005 - - -
k-modes with global adaptive-sum 0.0846 0.0187 - - -

k-modes with global adaptive-product 0.0986 0.0279 - - -
fuzzy c-modes with local adaptive-sum 0 - 1.0000 0.0000 1.0000

fuzzy c-modes with local adaptive-product 0.1008 - 0.5485 0.7628 0.4356
fuzzy c-modes with global adaptive-sum 0.0924 - 0.5473 0.7651 0.4341

fuzzy c-modes with global adaptive-product 0.0879 - 0.5473 0.7651 0.4341

Source: The author (2023)

Case 2 - I, there’s no performance difference between the proposed ones and the classical ones,
except for the local adaptive versions. On the other hand, in Case 2 - II, all the fuzzy proposed
algorithms performed better than the classical methods for all evaluation metrics. Again, as
observed for the non-overlapping datasets, the fuzzy version with local adaptive-sum distance
has the best performance.

Table 5 – Algorithm evaluation metrics results for overlapping dataset Case 2 - I

Version ARI S PC PE MPC
k-modes 1 0.6776 - - -

fuzzy c-modes 0.2424 - 0.7750 0.3119 0.5500
k-modes with local adaptive-sum 0.4310 0.4913 - - -

k-modes with local adaptive-product 0.4310 0.4913 - - -
k-modes with global adaptive-sum 0.2230 0.3947 - - -

k-modes with global adaptive-product 0.3300 0.3868 - - -
fuzzy c-modes with local adaptive-sum 0.4305 - 0.8229 0.2622 0.6458

fuzzy c-modes with local adaptive-product 0.4305 - 0.7884 0.2983 0.5769
fuzzy c-modes with global adaptive-sum 0.3781 - 0.7750 0.3119 0.5500

fuzzy c-modes with global adaptive-product 0.1068 - 0.7750 0.3119 0.5500

Source: The author (2023)

For Case 2 - III and Case 2 - IV the results are similar to Case 2 - II on the hard and fuzzy
algorithm versions, as in Tables 7 and 8. And the fuzzy version with local adaptive-sum has
the best performance again, and in Case 2 - IV, as observed in Case 2 - IV, it has scored the
theoretical bound of the evaluation metrics. Unlike what happened in the scenarios without
overlapping, all scenarios with datasets that allowed overlapping had some improvement in the
metrics observed in the fuzzy versions of the algorithm.

The ARI values for Case 2 - I and Case 2 - III scenarios show that the proposed fuzzy
methods perform better than the fuzzy classical one. In Case 2 - I, this overcoming is from
the local adaptive versions, while in Case 2 - III is from the global adaptive sum version. For
Case 2 - II and Case 2 - IV scenarios, the classical methods perform better than the proposed
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Table 6 – Algorithm evaluation metrics results for overlapping dataset Case 2 - II

Version ARI S PC PE MPC
k-modes 0.4130 0.2754 - - -

fuzzy c-modes 0.4753 - 0.5560 0.7344 0.3340
k-modes with local adaptive-sum 0.2470 0.0983 - - -

k-modes with local adaptive-product 0.2420 0.0932 - - -
k-modes with global adaptive-sum 0.2440 0.1194 - - -

k-modes with global adaptive-product 0.2400 0.0934 - - -
fuzzy c-modes with local adaptive-sum 0.2660 - 0.8794 0.1981 0.8192

fuzzy c-modes with local adaptive-product 0.3446 - 0.8271 0.2683 0.7407
fuzzy c-modes with global adaptive-sum 0.2662 - 0.6811 0.4688 0.5217

fuzzy c-modes with global adaptive-product 0.3002 - 0.6811 0.4688 0.5217

Source: The author (2023)

ones. In addition, the same fluctuation among the weighting settings on each hard and fuzzy
algorithm observed for non-overlapping datasets is seen here for Case 2 - II and Case 2 - IV.

Table 7 – Algorithm evaluation metrics results for overlapping dataset Case 2 - III

Version ARI S PC PE MPC
k-modes 0.2580 0.1587 - - -

fuzzy c-modes 0.1461 - 0.4087 0.9828 0.1131
k-modes with local adaptive-sum 0.0662 0.0860 - - -

k-modes with local adaptive-product 0.1330 0.0842 - - -
k-modes with global adaptive-sum 0.1180 0.0871 - - -

k-modes with global adaptive-product 0.1720 0.1068 - - -
fuzzy c-modes with local adaptive-sum 0.1202 - 0.7435 0.4112 0.6152

fuzzy c-modes with local adaptive-product 0.1443 - 0.7211 0.4455 0.5816
fuzzy c-modes with global adaptive-sum 0.1754 - 0.7202 0.4468 0.5803

fuzzy c-modes with global adaptive-product 0.1448 - 0.7202 0.4468 0.5803

Source: The author (2023)

Table 8 – Algorithm evaluation metrics results for overlapping dataset Case 2 - IV

Version ARI S PC PE MPC
k-modes 0.1800 0.1135 - - -

fuzzy c-modes 0.1045 - 0.2444 1.5154 0.0556
k-modes with local adaptive-sum 0.0725 0.0229 - - -

k-modes with local adaptive-product 0.0703 0.0242 - - -
k-modes with global adaptive-sum 0.0659 0.0071 - - -

k-modes with global adaptive-product 0.0743 0.0256 - - -
fuzzy c-modes with local adaptive-sum 0 - 1.0000 0.0000 1.0000

fuzzy c-modes with local adaptive-product 0.0853 - 0.6293 0.6122 0.5366
fuzzy c-modes with global adaptive-sum 0.0577 - 0.5947 0.6645 0.4933

fuzzy c-modes with global adaptive-product 0.0714 - 0.5947 0.6645 0.4933

Source: The author (2023)

In order to compare these methods, Student’s 𝑡 tests for independent samples with 5%
of significance are performed. Tables 9 and 10 give the values of the p-value. In these tables,
𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7, 𝜇8, 𝜇9, and 𝜇10 are, respectively, the average of the ARI and MPC
indexes for K-Modes, Fuzzy C-Modes, K-Modes with local adaptive-sum, K-Modes with local
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adaptive-product, K-Modes with global adaptive-sum, K-Modes with global adaptive-product,
Fuzzy C-Modes with local adaptive-sum, Fuzzy C-Modes with local adaptive-product, Fuzzy
C-Modes with global adaptive-sum, and Fuzzy C-Modes with global adaptive-product.

Table 9 – Statistical tests comparing K-Modes method for synthetic datasets

Dataset Statistical test

Case 1 - I

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(0.0295)

Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(0.0295)

Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(0.1636)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(0.3798)

Not Reject 𝐻0

Case 1 - II

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(1)

Not Reject 𝐻0

Case 1 - III

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(1)

Not Reject 𝐻0

Case 1 - IV

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(1)

Not Reject 𝐻0

Case 2 - I

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(0.2034)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(0.0537)

Not Reject 𝐻0

Case 2 - II

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(1)

Not Reject 𝐻0

Case 2 - III

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(1)

Not Reject 𝐻0

Case 2 - IV

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(1)

Not Reject 𝐻0

Source: The author (2023)

Values in these tables support the hypothesis that the fuzzy adaptive versions were superior
to the classical fuzzy version for all datasets, except Case 1 - I and Case 2 - I. For the hard
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versions, only the local adaptive versions were superior to the classical hard version and only
for Case 1 - I and Case 2 - I datasets.

Table 10 – Statistical tests comparing Fuzzy C-Modes method for synthetic datasets

Dataset Statistical test

Case 1 - I

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(1)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(1)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(1)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(1)

Not Reject 𝐻0

Case 1 - II

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Case 1 - III

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Case 1 - IV

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Case 2 - I

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(0.2705)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(0.4291)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(1)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(1)

Not Reject 𝐻0

Case 2 - II

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Case 2 - III

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Case 2 - IV

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Source: The author (2023)
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In order to compare the performance of each method using the computational cost, a study
was made concerning the number of iterations and the convergence time for each algorithm.
Regarding time complexity, the non-adaptive methods don’t need to compute the relevance
weights matrix, while the adaptive methods do. Therefore, in terms of time complexity, methods
based on adaptive distances have a greater computational cost than methods with non-adaptive
distances.

The time (in seconds) was noted for each algorithm until convergence. After 100 replications,
the average and standard deviation of these measures were calculated. Table 11 shows values of
the average and standard deviation of the time. From the results presented in this table, we can
observe that the adaptive methods are slower than the classical ones, with this difference being
greater as the number of variables and observations increases. For fuzzy adaptive methods, the
global adaptive-sum version had the longest time in most datasets. While the local adaptive
versions were faster. As for hard adaptive methods, the global adaptive-sum version is the
slowest for datasets with 4 variables. While for datasets with 2 variables, the global adaptive
methods present a faster time.

4.5 EXPERIMENTS ON REAL DATASETS

Experiments with real data were carried out with the objective of illustrating the practical
use of the proposed methods addressed in this work. The real datasets chosen were obtained
from the UCI Machine Learning Repository 2 (ASUNCION; NEWMAN, 2007). The variables that
represent the class to which an object belongs have been ignored during the clustering. Four
datasets were selected in which the variables are exclusively qualitative and, with the purpose
of example, binary or ordinal.

4.5.1 Results and analysis

4.5.1.1 Congressional Voting Records

The original database (SCHLIMMER, 1987) of this experiment contains 435 US congressmen
ranked according to their political position: Democrat (class 1) or Republican (class 2). The
objective of this application is to trace the voting profile of one and another class, based on 16
2 Available at https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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questions. Congressmen evaluated them and voted against or in favor of the subject matter. Thus,
all variables contain only two categories: yes or no, that is, DOM(𝐴2) = · · · = DOM(𝐴17) = 2.

The metadata of this dataset is presented below:

• Number of observations: 435;

• Class distribution:

Class 1: 267 (61%);

Class 2: 168 (39%).

• Number of variables: a class indicator variable and 16 more;

• Variables description

𝐴1. class name

𝐴2. handicapped-infants

𝐴3. water-project-cost-sharing

𝐴4. adoption-of-the-budget-resolution

𝐴5. physician-fee-freeze

𝐴6. el-salvador-aid

𝐴7. religious-groups-in-schools

𝐴8. anti-satellite-test-ban

𝐴9. aid-to-nicaraguan-contras

𝐴10. mx-missile

𝐴11. immigration

𝐴12. synfuels-corporation-cutback

𝐴13. education-spending

𝐴14. superfund-right-to-sue

𝐴15. crime

𝐴16. duty-free-exports

𝐴17. export-administration-act-south-africa
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Table 12 shows the evaluation metrics results obtained for the congressional dataset. There
is a slight performance difference for the hard and fuzzy algorithm versions when including
an adaptive distance by the observed values of the ARI. Showing higher values for the global
adaptive-product and local adaptive-sum distances. The fuzzy algorithm versions showed no
performance difference by the internal indexes.

Table 12 – Algorithm evaluation metrics results for congressional voting records dataset

Version ARI S PC PE MPC
k-modes 0.5034 0.4874 - - -

fuzzy c-modes 0.5300 - 0.6728 0.4976 0.3457
k-modes with local adaptive-sum 0.5166 0.4854 - - -

k-modes with local adaptive-product 0.5100 0.4873 - - -
k-modes with global adaptive-sum 0.5166 0.4870 - - -

k-modes with global adaptive-product 0.5232 0.4883 - - -
fuzzy c-modes with local adaptive-sum 0.5435 - 0.6728 0.4976 0.3457

fuzzy c-modes with local adaptive-product 0.5300 - 0.6728 0.4976 0.3457
fuzzy c-modes with global adaptive-sum 0.5367 - 0.6728 0.4976 0.3457

fuzzy c-modes with global adaptive-product 0.5435 - 0.6728 0.4976 0.3457

Source: The author (2023)

4.5.1.2 Hayes-Roth

This dataset consists of a list of observations evaluated by 3 variables: age, educational
level, and marital status. The dataset was originally considered in (HAYES-ROTH; HAYES-ROTH,
1977).

The metadata of this dataset is presented below:

• Number of observations: 132;

• Class distribution:

Class 1: 51 (39%);

Class 2: 51 (39%);

Class 3: 30 (22%).

• Number of variables: a class indicator variable and 3 more;

• Variables description

𝐴1. class name, where DOM(𝐴1) = 3

𝐴2. age, where DOM(𝐴2) = 4
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𝐴3. educational-level, where DOM(𝐴3) = 4

𝐴4. marital-status, where DOM(𝐴4) = 4

Table 13 shows the evaluation metrics results obtained for the Hayes-Roth dataset. The ARI
values showed, for both classical and proposed hard and fuzzy versions, the absence of pattern
matching in the clustering. For hard versions, the S values showed that the classical version
performs better than the proposed ones. On the other hand, the fuzzy proposed algorithms
performed better than the classical one for all internal metrics. The fuzzy version with local
adaptive-sum distance has the best performance.

Table 13 – Algorithm evaluation metrics results for Hayes-Roth dataset

Version ARI S PC PE MPC
k-modes -0.0139 0.3870 - - -

fuzzy c-modes -0.0120 - 0.5210 0.7925 0.2820
k-modes with local adaptive-sum 0.0944 0.243 - - -

k-modes with local adaptive-product 0.0891 0.180 - - -
k-modes with global adaptive-sum -0.0085 0.2740 - - -

k-modes with global adaptive-product -0.0145 0.2890 - - -
fuzzy c-modes with local adaptive-sum 0 - 1 0 1

fuzzy c-modes with local adaptive-product 0.0150 - 0.7769 0.3570 0.6653
fuzzy c-modes with global adaptive-sum -0.0041 - 0.7751 0.3596 0.6626

fuzzy c-modes with global adaptive-product -0.0066 - 0.7751 0.3596 0.6626

Source: The author (2023)

4.5.1.3 Car Evaluation

This dataset consists of a list of cars, separated into 4 classes, where there is a classification
based on the purchase condition of the vehicle (BOHANEC; RAJKOVIC, 1988), evaluated by 6
variables considered helpful when decision-making about buying a car.

The metadata of this dataset is presented below:

• Number of observations: 1,728;

• Class distribution:

Class 1: 1,210 (70%);

Class 2: 384 (22%);

Class 3: 69 (4%);

Class 4: 65 (4%).
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• Number of variables: a class indicator variable and 6 more;

• Variables description

𝐴1. class name, where DOM(𝐴1) = 4

𝐴2. buying, where DOM(𝐴2) = 4

𝐴3. maint, where DOM(𝐴3) = 4

𝐴4. doors, where DOM(𝐴4) = 4

𝐴5. persons, where DOM(𝐴5) = 3

𝐴6. lug-boot, where DOM(𝐴6) = 3

𝐴7. safety, where DOM(𝐴7) = 3

Table 14 shows the evaluation metrics results obtained for the car evaluation dataset. The
ARI and S values showed, for both classical and proposed hard and fuzzy versions, the absence
of pattern matching in the clustering. The same is observed for the fuzzy algorithm versions,
where the PE values reached the theoretical upper bound.

Table 14 – Algorithm evaluation metrics results for car evaluation dataset

Version ARI S PC PE MPC
k-modes 0.0118 0.1055 - - -

fuzzy c-modes 0.0748 - 0.2705 1.3480 0.0273
k-modes with local adaptive-sum -0.1119 -0.0109 - - -

k-modes with local adaptive-product 0.0222 0.1024 - - -
k-modes with global adaptive-sum 0.0318 0.0983 - - -

k-modes with global adaptive-product 0.0114 0.1099 - - -
fuzzy c-modes with local adaptive-sum 0.0273 - 0.2714 1.3460 0.0286

fuzzy c-modes with local adaptive-product 0.0452 - 0.2699 1.3490 0.0266
fuzzy c-modes with global adaptive-sum 0.0757 - 0.2705 1.3480 0.0273

fuzzy c-modes with global adaptive-product 0.0736 - 0.2705 1.3480 0.0273

Source: The author (2023)

4.5.1.4 Balance Scale

This dataset was generated to model the experimental results of cognitive tests (SIEGLER,
1976) with weights and distances, aimed at children. The study used a scale, in which each
experiment contained different blocks of weights and distances between them, in each part
of the balance. The children were asked to predict the outcome of placing certain numbers
of weights at various distances to the left or right of the scale. Therefore, we obtained three
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classes, which vary depending on the actual balance result: class 1 (on the right), class 2 (left)
and class 3 (balanced). All variables have a domain equal to 5, except the variable 𝐴1, which
represents the number of classes.

The metadata of this dataset is presented below:

• Number of observations: 625;

• Class distribution:

Class 1: 288 (46%);

Class 2: 288 (46%);

Class 3: 49 (8%).

• Number of variables: a class indicator variable and 4 more;

• Variables description

𝐴1. class name

𝐴2. left-weight

𝐴3. left-distance

𝐴4. right-weight

𝐴5. right-distance

Table 15 shows the evaluation metrics results obtained for the balance scale dataset. The S
values showed no difference between the classical and proposed hard algorithm versions, while
the ARI values showed that the classical method had a better performance than the proposed.
The internal indexes showed no performance difference for the fuzzy algorithm versions.

Table 15 – Algorithm evaluation metrics results for balance scale dataset

Version ARI S PC PE MPC
k-modes 0.1582 0.1470 - - -

fuzzy c-modes 0.0265 - 0.3770 1.0329 0.0655
k-modes with local adaptive-sum 0.0677 0.1523 - - -

k-modes with local adaptive-product 0.0651 0.1430 - - -
k-modes with global adaptive-sum 0.0466 0.1564 - - -

k-modes with global adaptive-product 0.1030 0.1457 - - -
fuzzy c-modes with local adaptive-sum 0.0090 - 0.3768 1.0327 0.0652

fuzzy c-modes with local adaptive-product 0.0020 - 0.3789 1.0298 0.0683
fuzzy c-modes with global adaptive-sum 0.0013 - 0.3770 1.0329 0.0655

fuzzy c-modes with global adaptive-product 0.0013 - 0.3770 1.0329 0.0655

Source: The author (2023)
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Table 16 – Statistical tests comparing K-Modes method for real datasets

Dataset Statistical test

Congressional Voting Records

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(0.7444)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(0.4380)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(0.9943)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(0.7150)

Not Reject 𝐻0

Hayes-Roth

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(0.3416)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(0.2348)

Not Reject 𝐻0

Car Evaluation

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(0.7638)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(0.1391)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(0.0928)

Not Reject 𝐻0

Balance Scale

𝐻0 : 𝜇1 ≥ 𝜇3

𝐻1 : 𝜇1 < 𝜇3

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇4

𝐻1 : 𝜇1 < 𝜇4

(1)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇5

𝐻1 : 𝜇1 < 𝜇5

(0.2587)

Not Reject 𝐻0

𝐻0 : 𝜇1 ≥ 𝜇6

𝐻1 : 𝜇1 < 𝜇6

(0.5303)

Not Reject 𝐻0

Source: The author (2023)

In order to compare these methods, Student’s 𝑡 tests for independent samples with 5% of
significance are performed. Tables 16 and 17 give the values of the p-value. In these tables, 𝜇 is
the same as defined in the synthetic datasets section. Values in these tables show that the fuzzy
local adaptive versions were superior to the classical fuzzy version for Car Evaluation, Balance
Scale, and Hayes-Roth datasets. This late presents superior performance for all fuzzy adaptive
versions. While the hard adaptive versions weren’t superior to the classical hard version for all
datasets.
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Table 17 – Statistical tests comparing Fuzzy C-Modes method for real datasets

Dataset Statistical test

Congressional Voting Records

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(1)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(1)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(0.9280)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Hayes-Roth

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(2.2 × 10−16)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(2.2 × 10−16)

Reject 𝐻0

Car Evaluation

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.8 × 10−9)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(0.0001)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(0.9834)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(1)

Not Reject 𝐻0

Balance Scale

𝐻0 : 𝜇2 ≥ 𝜇7

𝐻1 : 𝜇2 < 𝜇7

(2.6 × 10−6)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇8

𝐻1 : 𝜇2 < 𝜇8

(0.0012)

Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇9

𝐻1 : 𝜇2 < 𝜇9

(0.7168)

Not Reject 𝐻0

𝐻0 : 𝜇2 ≥ 𝜇10

𝐻1 : 𝜇2 < 𝜇10

(0.8401)

Not Reject 𝐻0

Source: The author (2023)
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5 CONCLUSION

In this chapter, conclusions of this Fuzzy C-Modes clustering algorithm with variable
weighting are presented, as well as future work directions.

5.1 CONTRIBUTIONS

It was proposed a new fuzzy clustering algorithm for qualitative data based on adaptive
distances as dissimilarities measure to compose the objective function. The presented theoretical
results extend the clustering algorithms based on adaptive distances already known in the
literature when quantitative data is available. In comparison with the conventional methods,
the proposed algorithm presented a better performance on the evaluation metrics by adding to
its distance function a weight associated with the variable. For datasets with a higher level
of dispersion of the variable and superposition of classes, the local adaptive distances had a
superior performance since they have different weights for each variable across the clusters.

Experiments on synthetic datasets demonstrated that the Fuzzy C-Modes algorithm versions
with variable weighting presented higher modified partition coefficient values and lower partition
entropy values for almost all datasets, except for the ones with two variables only. Also, the
fuzzy algorithm version with local adaptive sum distance achieved the theoretical bound of the
evaluation metrics when the level of superposition of classes was at the maximum for both
overlapping and non-overlapping datasets. Differently, the K-Modes algorithm versions with
variable weighting had a lower performance when compared to the original algorithm. The
internal index presented values below those considered by the literature that would deviate
the partition found by the algorithm from a random matching. Whereas the external index
suggested an associated matching result from the known label and clustering partition.

The algorithms were also applied to real datasets, from the UCI Machine Learning repository,
with the objective of illustrating the practical use of the proposed methods with different types
of qualitative data. In particular, the resulting fuzzy partitions obtained from the Congressional
and Hayes- Roth datasets presented a better performance for the adaptive distances algorithm
versions, according to external and internal indexes respectively.

The generation of the algorithms, creation of random data, and evaluation indexes were
implemented in a library in the programming language R that was made accessible with an
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open-source repository.

5.2 FUTURE WORKS

The nature of the data may vary a lot, depending on the research domain, and the existence
of datasets with different types of qualitative is likely. With that in mind, the extension of the
proposed algorithms with mixed distance functions to be able to handle binary, nominal, and
ordinal variables at once is a point of improvement in this work.

Moreover, another possible improvement point is to evaluate the insertion of a weight in
the membership wherein each object, cluster, and variable has a suitable weight. (PIMENTEL;

SOUZA, 2016) proposed this approach as the multivariate with weighting for quantitative data.
This could lead to better resulting fuzzy partitions, reducing the ambiguity in the membership
values.
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